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The connection of spin and commutation relations for different
fields is studied. The normal locality is defined as the property
that two Boson fields as well as a Boson field and a Fermion field
commute, while two Fermion fields anticommute with each
other at a spacelike distance. A regular locality is defined as any
combination of commutativity and anticommutativity between
various pairs of fields at spacelike distance, where the kinematic-
ally related fields are assumed to obey the same type of commuta-~

tion relations. The normal and regular weak locality is defined in
a corresponding way. It is proved on the basis of the Lorentz
invariance and spectrum conditions that any regular locality is
equivalent to the normal locality plus a set of even-oddness
conservation laws. It is further shown, under the assumption of
the normal weak locality between pairs of the same field, that any
regular weak locality is equivalent to the normal weak locality
plus a set of even-oddness conservation laws,

1. INTRODUCTION

S is well known, the connection of spin and
statistics has been proved first by Pauli® for free
fields. Later, proofs based on conventional basic
postulates of the relativistic quantum field theory have
been given by Luders and Zumino® and by Burgoyne®
for interacting fields. The theorem proved by the
latter authors states that the wrong connection of
spin and statistics can never be postulated for the
relativistic quantum field theory where the wrong
connection means the anticommutation relation be-
tween @q{x) and @g(y)* for a Boson field ¢ and the
commutation relation between y,(x) and yYs(v)* for a
Fermion field ¢, for the spacelike separation of 2 and y.
The connection of spin and statistics in a wide sense,
namely, commutation relations between . different
fields, has been ‘studied by various authors.*~® The

! W. Pauli, Phys. Rev. 58, 716 (1940). Note added in proof. The
Mpmof of spin and statistics for free fields appear in the paper
Fierz, Helv. Phys. Acta 12, 3 (1939). The author is indebted

to Professor R. Jost for his remark on this point.

? G. Luders and B. Zumino, Phys. Rev, 110, 1450 (1958).

3N. Burgoyne, Nuovo cimento 8, 607 (1958

¢ K. Nishijima, Progr. Theoret. Phys (Kyoto) 5, 187 (1950);
S. Oneda and H. Umezawa, ibid. 9, 685 (1933); T. Kinoshita,
Phys. Rev. 96, 199 (1954); H. Umezawa, I Podolansln and
S. Oneda, Proc. Phys. Soc. (Londcm) A68, 503 (1955); R. Spltzer
Phys, Rev. 105, 1919 (1957).

5 G. Luders, 7. Naturforsch. 13a, 254 (1958).

8T, Kinoshita, Phys, Rev. 110, 978 (1958).

normal connection of spin and statistics is defined as
the case where two Boson fields, or a Boson and a
Fermion field, commute while two Fermion fields
anticommute for the spacelike separation of their
arguments. Luders® and Kinoshita® have shown on the
basis of the Hamiltonian formalism that the general
case can be reduced to the normal case by a series of
the Klein transformations’ which do not affect any
physical content of the theory

The purpose of this paper is to give a different proof

of the connection of spin and statistics én a wide sense

which is based solely on the conventional basic postu-
lates of the relativistic quantum field theory.

To state our results, let us define normal and regular
localities. The normal locality is what has been called
the normal connection of spin and statistics above.
The regular locality is any specific combination of
commutation and anticommutation relations between
various pairs of fields for the spacelike separation of
their arguments where the kinematically related fields
(namely, various components of covariant fields as
well as their hermitian conjugates) are assumed to
obey the commutation or anticomrutation relation
simultaneously.

We also introduce similar definitions for the weak

70. Klein, J. Phys. (U.S.S.R.) 9, 1 (1938).
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locality.? A set of fields is said to have the weak locality
if their vacuum expectation values satisfy

(o, 01(21) " - u(20)Wo)
= (— 1)1 (W, @a(%n)- - - @1(x)¥0) (1.1)

for any real regularity points x;- - -x,. If 5 is the same
as the one derived from the normal locality, the weak
locality is said to be normal, and if 5 is the same as the
one derived from a regular locality, the weak locality is
said to be regular.

Our result is theorem 1.

Theorem 1. In a relativistic quantum-field theory
satisfying (1) the invariance under the inhomogeneous
restricted Lorentz group, and (2) spectrum conditions,
namely, the existence of the unique vacuum, the
positivity of the energy, and the existence of the
lowest nonzero mass, any regular locality is equivalent
to the normal locality plus a set of even-oddness
conservation laws. With the additional assumption of
the normal weak locality between the same field, any
regular weak locality is equivalent to the normal weak
locality plus the same set of even-oddness conservation
laws.

It should be stressed that the connection of spin
and statistics between different fields can be proved
even with weak locality.

2. EVEN-ODDNESS CONSERVATION LAWS

A theory is said to have an even-oddness conservation
law for a set « of fields® if all the Wightman functions
containing an odd number of fields belonging to «
vanish. In such a case, the two spaces Ho, and H,
generated from the vacuum by polynomials of fields
which are of odd or even degrees, respectively, with
regard to fields in e, are orthogonal to each other and
the both spaces are obviously invariant under the
inhomogeneous restricted Lorentz group. Hence the
operator p(e), defined to be 1 on H, and —1 on H,,
is well defined” and commutes with the representation
U(a,A) of the inhomogeneous restricted Lorentz group.

Suppose we define new fields ¢’ by multiplying p(a) to
all the fields ¢ belonging to a certain set 8,°

d=pl@)e if €8,
o'=0 if pB.

Then, the ¢’ are again Lorentz covariant fields and
the commutation and anticommutation relations are
interchanged for the localities between a field in a—g4
and a field in 8, as well as those between a field in an g8
and a field in 8—a, while the rest of the localities are

(2.1)

8 R. Jost, Helv. Phys. Acta 30, 409 (1957).

9 The kinematically related fields are assumed to be simui-
taneously in the set or not in the set.

10 The vacuum state is assumed to be cyclic with respect to the
set of all the fields.

g8 is the set of elements belonging to «, but not belonging
to B.
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unchanged. The Wightman functions for the new fields
o differ at most from those for old ¢ by sign, and the
physical content of the theory such as the S-matrix
elements is obviously the same for ¢’ and for ¢.

As we shall see in Sec. 4, if we have sufficiently many
even-oddness conservation laws in the theory, the
transformation of the type (2.1)" enables us to reduce
any regular locality to the normal locality. Hence, it is
important to derive sufficiently many even-oddness
conservation laws from a regular locality. This can be
accomplished by the following theorem.'

Theorem 2. If a theory satisfies (1) and (2) of
theorem 1, if C; and C; are products of field operators,
and if C; and U(Aa,1)C:U (Aa,1)~" anticommute for a
spacelike vector a and sufficiently large A, then the
vacuum expectation value of either Cy or Cy vanishes.

The proof of this theorem is based on the following
lemma.

Lemma 1. In a theory satisfying (1) and (2) of
theorem 1,

{l_lg (‘I’o, Sal(xl)' i <Pk(xk)
X Opr1(Frp1—AG) - - - 0 (xa—Na)¥y)
= (W, ¢1(a1) - - o1 (x2)¥o)

X (¥o, @rr1(tes1) - - 0n(2a)¥0), (2.2)

where ¢ is a spacelike vector.

This lemma has been proved in an averaged sense
for an arbitrary configuration of #’s in theorem 3 of
footnote 13, and the exponential approach to the limit
is provable in a manner similar to the proof of theorem 1
of footnote 13 if x;—xs, - -
%n—-1—%, form a Jost point.

By this lemma we have

;‘im (‘I’o, Cly()\d,l)CZU(}\a,l)“l\I’o)

‘Xe T Xkt1, &y Xpp1 T Xkb2"

= (¥0,C1%0) (¥o,C¥o), (2.3a)
{im (¥y, U(\a,1)C2U (Na,1)"1Cr¥y)
= (‘I’O,Cz‘l’o) (‘I’o,C 1‘1’0), (23b)

and hence, we have theorem 2.
A similar theorem holds for weak locality.**
Theorem 3. If a theory satisfies (1) and (2) of
theorem 1 plus a regular weak locality, and if n(1- - -n)
+n(1---k)+9(k+1---n) is odd, then either

(To,01(%1) "+ * 0k (®K)¥0) o (Wo,0r41(%Xas1) "+ = @n(%n)¥0)

vanishes identically.
The proof of this theorem is similar to the previous
theorem, namely, if x1—%a- * *%r—%rt1, &, Xep1—Xkg2” "

12 H, Araki, J. Math. Phys. 2, 163 (1961). See Appendix B.

1 H, Araki, Ann. Phys. 11, 260 (1960). .

14 The author is indebted to Professor R. Jost for pointing out
the applicability of our proof to the case of the weak locality.
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%n—1—%, form a Jost point, we have
}_1{2 (Wo, o1(%1) - - - on(r)
X @rr1(%641—Na) - « » Pn(®n—Na)¥o)
= (Yo, ¢1(x1) - - - ox () ¥ 0)

X (Yo, orr1(®it1) -+ * 0 (%4)¥0), (2.40)
lim (To, n(#n—Na) - - - Pry1(2kr1—Na)
X i) -+ p1(%1)¥0)
= (W0, ¢n(®n) - - - @r11(%41)¥0)
X (%o, ou(xe) - - - 1(%1)¥0).  (2.4b)

Hence, if n(1---n)+n(1---k)+q(k+1---n) is odd,
we have, from (1.1),

(¥o, p1(21) - - - r(@r)¥o)
X (%o, @ry1{Frt1) - on(@n)¥o)=0. (2.5)

Thus, one of the two factors vanishes at least in a real
neighborhood of its real regularity point. By the well-
known argument of the analytic continuation, we have
theorem 3.

3. ILLUSTRATIVE EXAMPLE

As a simple example, we consider a theory of two
scalar fields ¢ and ¥ which anticommute with each
other at the spacelike separation of their arguments.
Let C; be a product of mi1¢’s and ny’s, and C, be a
product of ma¢’s and nyl’s. By theorem 2, if myng+mon,
is odd, then

(¥0,C1¥0) (¥o,Cs¥)=0. 3.1)

Now at least one of the following four possibilities
always holds for the vacuum expectation value w of
me’s and ny’s:

(1) all the w with odd m vanish,

(2) all the w with odd » vanish,

(3) at least one w with odd m and odd » does not
vanish,

(4) at least one w with odd m and even » and at
least one w with even m and odd # do not vanish.

For case (1), we have the conservation law of the
even-oddness p(¢) of ¢. If we define ¢'=p(¢)¢, then
¢ is a scalar field and ¢’ and ¢ commute with each
other. The pair of fields ¢ and ¢’ is physically equivalent
to the pair ¢ and ¢ and satisfies the normal locality.
For case (2), we have the conservation law of the
even-oddness p(¥) of ¢, and ¢'=p ()¢ commutes with
¥. For case (3), by taking the nonvanishing w with odd
m and odd # as (¥y, C1¥%,) in (3.1), we see that all the
w with even m and odd %, as well as those with odd m
and even #, vanish. Hence, we have the conservation
law of the even-oddness p of ¢ and ¢, and ¢'=p¢
commutes with . For case (4), by taking the non-
vanishing w with odd 7 and even n as (¥, C1¥y) in
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(3.1). we see that (2) holds. [In a similar manner (1)
also holds. ] Thus, we see that theorem 1 holds for this
simple example.

4. GENERAL CASE

For the discussion of the general case, it is advan-

. tageous to use the vector- space S over the prime field

with characteristic 2.1516 We number different fields,
giving the same number to kinematically related fields.
To each Wightman function w, we assign a vector
s(w) in S whose ith component is 1 or 0 according to
whether the number of ith field contained in the
Wightman function w is odd or even.

For any set « of fields, we denote by #() the vector in
S whose ith component is 1 or 0 according to whether
or not the sth field belongs to a. Then, a given theory
has an even-oddness conservation law for the set a
if and only if

(te),s(w))=1

As is well known, for the set f of all the Fermions,
(4.1) holds.

To each regular locality we assign a matrix (e;;)
whose matrix element ¢;; is 1 if ith field and jth field
anticommute and is 0 if they commute with each other.
Note that kinematically related fields are assumed to
obey the same locality. We also assign the same matrix
(ei;) to the corresponding regular weak locality. By
definition

implies w=0. (4.1)

(4.2)

€;;= €j4.

By the theorem proved in footnotes 2 and 3 (or by as-
sumption in the case of the weak locality),

€= l(f)i.

We define a functional v over S (not necessarily
linear) by

v(s)=0

4.3)

if s(w)=s implies w=0

=1 otherwise. (4.4)
Then, (4.1) can be restated as
v(s)[t(a),s1=0 (4.5)

for all s if and only if we have the even-oddness con-
servation law for the set a.
Tf we define a linear transformation e of the space S by

(e8)i=2; €ijsjy (4.6)

15 The prime field with the characteristic 2 consists of two
elements,0and 1.04+0=1+1=0-0=0-1=1.0=0.0+4+1=1-1=1,
A vector in S consists of an n-tuple of elements of this field:
s==(s1° * - 5n). The sum of two vectors is defined by the component-
wise sum, and the inner product is defined (in a fixed basis) by

()= Z siti.
i=1

16 See appendix of footnote 5.
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then theorems 2 and 3 state that for any s and ¢,

v()) (4,es)y (s)=0.
For the normal locality, e is given by

&M =1(f)(f) ;.
The transformation (2.1) of fields changes ¢ into

et (@)t (B);+1(B)it(c) . (4.9)

To prove theorem 1, we have to show that any e
satisfying (4.2), (4.3), and (4.7) can be reduced to ™
by a series of transformations of the type (4.9) where
a satisfies (4.5). Hence, it suffices to prove the following
lemma.

Lemma 2. Any e satisfying (4.2), (4.3), and (4.7)
can be written in the form

€=k (H(ar)is® j+sP it () ;)€™

where each o, satisfies (4.5).
For the proof, we define o= e¢—¢™. We then restate
(4.2) and (4.3) in a basis-independent way as

4.7)

(4.8)

(4.10)

(s,08)=0, (s,0)=(t0s). (4.11)
We now define a subset I of S by
T={s€S;v(s)=1}. (4.12)
Then (4.7) can be restated as
oTLT. (4.13)

If we denote by T' the linear subset of S generated by T,
then I't=Tt is a linear subset of S, and hence, (4.13)
is equivalent to

ol LT (4.14)

Furthermore, we have an even-oddness conservation

H. ARAKI

law for the set « if and only if
Ha) LT. (4.15)

Let e®---¢™ be a basis of I' and let e®- - -e(™ be
a basis of S containing the above basis of T'. Let §®- . -
§(" be linear functionals over S defined by

§WDe® = 4§y, (4. 16)

As one can easily show, any linear functional § over .§
can be expressed as
ds=(d,s),

with a suitable element d in S. Let d® be such an
element in § corresponding to 6%,

Let us denote the matrix elements of ¢ in this new
coordinate system by

air'= (D ,ge®), 4.17)
Now, for any elements s and ¢ in S,
(t,o‘S)= Z (t’d(i))aik,(d(k)ys)' (418)
ik
By (4.11) and (4.17),
oi'=0, ou'=o0w. (4.19)
By (4.14),
o'=0 1if 7, k<m. (4.20)
Hence, we have '
o= T [dWXs®|+[sONa®],  (@21)
k>m
where
s®= 3 gy'd®, (4.22)

i<k

Since d® for k>m are orthogonal to T, (4.21) is the
same as (4.10) [cf. (4.15)7].
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A systematic classification is made of all local Lorentz-invariant quantized field theories which are free
in the sense that [¥(x), ¥ (x)] is a ¢ number. It is shown that none exist except those given in the classical
paper of Fierz, and that, in fact, certain of the fields listed by Fierz are redundant.

1. INTRODUCTION

HE aim of the present paper is to classify the set
of all possible (proper) Lorentz invariant
quantum field theories of free fields, these theories
being specified by a set of axiomatic requirements to
be described. More specifically, it will be shown that
the set of fields occurring in any such theory may be
decomposed into sets of fields describing particles of
various positive masses and of zero mass. These
various sets of fields will then be completely analyzed.
The problem considered in this paper has been
considered from slightly different points of view by
quite a number of authors. The classical paper of Fierz,!
gives an account of the particular fields to be noted in
the present paper, without remarking that, for positive
mass at any rate, the fields of the transformation
Y¥A1---am are complete and canonical, or noting that
for positive mass these fields with the transformation
YA1- - An1- - -um are superfluous. (Here we have employed
a notation to be explained in detail in what follows.)
Gel’fand and Yaglom? give a general, though largely
unquantized, treatment of fields under the rather
special assumption that the fields satisfy first-order
equations of a generalized Dirac form. This work of
Gel’fand and Yaglom is related to earlier works of
Bhabha,® Harish-Chandra,* Moses,® Umezawa and
Visconti, Rarita and Schwinger,” and Lamont.?

2. LORENTZ GROUP AND ITS REPRESENTATIONS
Résumé

As a necessary preliminary to the detailed statement
both of problems and results, we must begin with a
discussion reviewing the most important properties
of the Lorentz group and its irreducible representations.
All this material, comprising the whole of the present
section, is classical, and is derived in detail by Van der
Waerden.? Nevertheless, it is well to review this

1 Marcus Fierz, Helv. phys. Acta 12, 3 (1938).

21. M. Gelfand and A. M. Yaglom, J. Exptl. Theoret. Phys.
{U.S.S.R.) 18, 703 (1948a).

3H. J. Bhabha, Revs. Modern Phys. 17, 200 (1945).

4 Harish-Chandra, Phys. Rev. 71, 793 (1947).

5 H. Moses, Nuovo cimento Suppl. 1, 1 (1938).

8 H. Umezawa and A. Visconti, Nuclear Phys. 7, 348 (1956).

7P, Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).

8 J. Lamont (unpublished).

9B. Van der Waerden, Die Gruppentheoretische Methoden in
Quontenmechanik (Verlag Julius Springer, Berlin, Germany, 1932).

material, albeit hurriedly, both for the convenience of
the reader, and in order to establish certain details of
notation to be used subsequently.

The Lorentz metric in 4-space time E* is

x=gl— p2— 22— 2 &= (X0, ¥1,%2,%s)
= gt g2 — 22 =({tx,y,2)=(tx) (2.1)
=p—x2

A linear inhomogeneous transformation which preserves
this metric will be called an extended Lorentz trans-
formation; the collection of all such transformations is
the extended Lorentz group &. The subgroup of
homogeneous transformations is called the Lorentz
group and denoted by £. If e€ &, there exist a unique
IEL and o E* such that ex=lx+a; I=1(e) is called
the rotation part of ¢, a=a(e) the translation part of e.
The map I— I(e) is evidently a homomorphism. The
translations x — x-+¢ form an abelian subgroup 7 of
8&; evidently & is homeomorphic to £®7, that is, &
is £®E* topologically.

Connectedness

£ and consequently & has four connected compo-
nents, since det(l)==1, and sgn[7(1,0,0,0) Jo===1 are
both continuous on £. Elements of the 4 components
are ¥ — x (proper component) ; (£,x) — (t, —x) (parity);
(t,x) — (—t,x) (time reversal); x— —x(T'P). The
proper components of £ and &, that is, the connected
subgroups of £ and & consisting of all transformations
which may be connected to the identity transformations
by a continuous curve, will be denoted by £, and &,
respectively. Note that e€ &, if and only if Z(e)EL,.

It should be emphasized that all the results to be
deduced below will follow from &, invariance.

A vector xCE* is timelike if #*>0, spacelike if
42<0, and null if 22=0. The indecomposable invariant
subsets of E¢ under £, are evidently the set consisting
of the origin alone, and the three families of sets

S m={x|a*=—m?}; m>0: These are the
hyperboloids of spacelike vectors.
Sat={x|a?=m? £,>0}; m>0: These are the
hyperboloids of timelike forward vectors.
T ={x|at=m?, %<0}, m<0: These are the
hyperboloids of timelike backward vectors.

2.2)
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The integral [ f(x)dx of a function on 4-space can be
decomposed as an integral of £,-invariant surface
integrals:

ff(x)dx= j;mdm{ fsz(x)da-f- Zm+f(x)dcr

+ f(x)da}. (2.3)

Zm~

A corresponding decomposition of distributions may
be made using the Fourier transform. If fis a (tem-
pered) distribution, and ¢ its Fourier transform, so
that we have (symbolically)

fla)= f ¢ 9 (R)dk,

we put
fm@)=§ e®2p(k)dk; (2.4a)
and m
fm(x)= f “ei® D¢ (k) dk. (2.4b)
SmtwEn~
Then -
I= f (fem+f)dm. (2.5)

All of these symbolic operations may readily be carried
out rigorously when suitably restrictive hypotheses
are made on the distribution f.

In our subsequent work with the maps f— f(m
and f— fim, we shall alwaysassume (atleast implicitly)
that the carrier of the Fourier transform of the dis-
tribution f is the union of a fimite collection of the
Lorentz-invariant hyperboloids 2., Z,*, and Z,-.
Under this hypothesis, formula (2.5) may be written
in the simpler form

f:: % f(”%‘)“{" LZj f(mz‘).

te==1

(2.6)

The distributions of the form f(. and f™ appearing
in Eq. (2.6) have Fourier transforms carried by the
hyperboloids 2, and 2,,7\ Z ., respectively. It follows,
according to the theory of distributions, that f(m and
f¢™ satisfy partial differential equations

CH-m?fom (x)=0, and ([J—mHtfm=0, (2.7)

provided only that the exponent % is sufficiently large.
Here,

(J=w—(&*/ar)

denotes the d’Alembertian operator.

It follows easily from Eq. (2.7) that, under the
hypothesis that the carrier of the Fourier transform of
the distribution f is the union of a finite collection of

SCHWARTZ

the Lorentz-invariant hyperboloids Z,,
2w, we may write fi, and f in the form

Jem=Pwm(Df
fom=Pm([])f,

where Py ([ ]) and P ([ ]) are suitably chosen finite
polynomials (with constant coefficients) in the d’Alem-
bestian operator [ |. This shows that if f(x)=0 for %
in a region, then f(m(x) and f (x) vanish in the same
region.

We note the following properties of the maps f—f (m
and f—f® as a formal lemma, leaving the elementary
proofs to the reader.

Lemma. The maps f— fim and f— O are linear;
real in the sense that if g= f ™, then = f™; and Lorentz
invariant; so that fim (Lx)=[f(Lx)Jm-

Next we wish to reiterate some well-known topolog-
ical properties of the Lorentz group, especially those
having to do with the fundamental group of this group.
The group £, is doubly connected, i.e., doubly covered
by its simply connected covering group. Call this
covering group U. Then the natural mapping of the
covering group U onto the group £, maps precisely
two points onto each point of £; each of these points
has a neighborhood mapped in 1—1 way, so that the
covering of £, by U is by smooth sheets without branch
points (as in Riemann surface theory).

Thus £, admits continuous double-valued functions,
but not continuous n-valued functions for n>2.

More explicitly : Let U be the group of 2X2 complex
matrices of determinant 1. Let .S be the set of all
self-adjoint 2)X 2 matrices. Let U act on S by ¢ — uan*
=h(u)a; then U is mapped homomorphically into a
set of linear transformations of S, preserving the
determinant of a&.S. Write ¢ES as

arr Qe
(o )
Q2 Qo2
an=I+3z, an=i—z for (ix,y2)EE"L
Then det(e)= (t+2) (t—2)— (x+iy) (x—iy) = £~ 52—4?

—22; so that if we map each 2)X2 unimodular matrix
% onto the map %(n) of E* defined by the two formulas

i+z  xtiy YEL A
x—1iy

1—t ¥—iy -3
and

Z,.t, and

(2.8)

(2.9)
and put

a12= :‘)C'!‘?,jf,

) (2.10a)

k() (tx,3,2)= (U2, ), (2.10b)

then % is a homomorphism of U into the Lorentz
group. Since U is connected, # must map U into
the connected component £, of the Lorentz group.
Thus, since U and £, are both six-dimensional, U
must be mapped onto £,. If k(u)=1, i.e., uen*=a for
all ¢&S, we have u=-1. Thus s(u)=hk(v) if and only
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if 2= v, Moreover, it clearly follows that inverse map
o{l) is defined up toa - sign; thisinverse homomorphism
is called the spin representation of £,. The homomorph-
ism e — o[ ()] is spin representation of &,.

This particular representation of the group &,
exemplifies the general notion of linear representation.

Definition. T G is a group, a representation of Gis a
homomorphism of G into a group of linear transforma-
tions in a linear vector or Hilbert space V; i.e., a set
of mappings v — L{g)v such that L(glgg)v~L(g1)L(g2)v.

[We permit L(g) to be defined up to sign.]
" Two representations L(g) in V and L'{g) in V' are
called eguivalent if there exists a 1—1 map M of ¥ on
V! such that ML()M 1= L(g). We write then L~1’,

If L(g) is a representation of G in V and L'(g) is a
representation in V', then the representation L/(g) in
V@V’ defined by L”(g)(v@v)=[L({gv]®[L (g)'] is
called the direct sum of L and L', and we write
H=rel.

A representation is irreducible if it is not the direct
sum of two other representations.

Theorem. Every finite-dimensional representation
L of the proper Lorentz group £, or the Lorentz group
£ may be written uniquely as a direct sum of Irreducible
representations.

The irreducible representations which appear in this
decomposition are said to appear in L.

What are the irreducible representations? We quote
the well-known answer.

Let fy-- mu1- - -un denote an arbitrary tensor defined
for A, u=1, 2, and symmetric in N’s and p’s separately;
we may on occasion write this as {(\1 - *Amjpa® « fia).
The collection of all such tensors evidently forms a
linear space. For each #= (") in U, put s =u(\"; \),
let @(A';\) be the complex conjugate of #(\';A),
and put

CL@) IO - A pa- )
=10 Ay )
Xy 50 ) <@ g @ (mn 3 8a). (2.9)

This evidently defines a linear representation of U; and
if for each IEL, we put LO=L{c ()], we deﬁne a
linear representation of £,, which we will denote by
the symbol (m)® (7).

Theorem. The representations (m)® (7) of £, are
all irreducible, and any irreducible representation of
£, is equivalent to one of them. If m-+n is even, the
representation is single valued. If m+n is odd, the
representation is double valued.

We speak in these two cases of even or odd representa-
tions, or of “even spin” or “odd spin.”

If L(g) is a representation of G in an m-dimensional
space V, then by introducing a basis in ¥V we may
think of L(g) as being given by any set of matrices
Rs*(g), 1 <e, B<m, such that Rs* (g)Rar(g") = Rs*(gg").
This enables us to introduce the two useful notions of
complex confugate and Kronecker product representations:
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If the representation L is given by the matrices
Re(g), then L is the representation given by the
matrices Bs*(g). ‘

If the representations Ly and L, are given by the
matrices Rig™(g) and R2.87(g), then L,QL; is the
representation given by the matrices R1.5,%{g) Rz.8:2(g).
Having such a collection of matrices in mind, we may
speak of an index « running between 1 and m as an
index belonging to the representation L. These composi-
tions between representations have various useful
properties:

() L (L1® L)~ (LYOL)® (LOLs)

(ll) Li® (L2®L3)~ (L1®L2)®L3

(i) ¥ M=LQL, then M=LQ®L'; a similar
formula holding for the complex conjugate of the direct
sum of two representations.

(i\f) L1®L2N£2®L§.

We have [(m)® (0)J@[(0)® (#)]= (m)X (#). Thus
if we abbreviate by writing (m)= (m)}X (0} and (%)
= {0} (1), we obtain a new notation consistent with
our old notation,

The fundamental result on the product of two
representations is the

Clesbsch-Gordan formula:

min{m,n)

(M) (n)= Z {m-n—2k).

By using this formula and the algebraic rules for
direct sums and Kronecker products, any Kronecker
product of the irreducible representations (m)X ()
of £, can be written as a direct sum of irreducible
representations.

The “natural” irreducible representation Lyas: & — lv
of £, as a group of transformations of the vectors
#EE* is equivalent to one of the complete set of
irreducible representations (m)X (#). To which? As is
well known, it is equwalent to (1)® (1). Thus, express-
ing the equivalence in terms of explicit matrices,
there must exist matrices o™, (\, p=1, 2, j=1, -, 4,)
such that if u=0o(l), we have ;™7 =a ¥ u
These matrices are simply the matrices which give the
(uniquely determined) map M of vectors V onte
tensors ¢= [y ] such that M Ly= LayxoM.

This set of four 2X2 matrices, whose absfract
significance appears in the last formulas, is known as
the set of 2)X2 Pauli spin matrices.

To deduce the specific form of the 2X2 Pauli spin
matrices, we may reason as follows. The representatmn
(X @A) of U is the representation of U7 in the set
[F]=[tu] of all 2X2 matrices determined by the

formula
[L (u} 8’\# = by » 'ﬁ}‘“’,

i.e., by the formula

(2.11)

L{uwy=utu*. (212}
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What we require then is a one-to-one linear mapping
t< V of 2)X2 Hermitian matrices ¢ onto vectors V in E*
such that

t<> V implies o ()t (D)* <> IV. (2.13)

It is evident from the definition of the map o [cf.
formulas (2.10a) and (2.10b)] that this map is the map

(V0+ Vs
V>
Vi—iVe

Vit+iV,
), (2.14)

Vo—V;3

so that the 2X2 Pauli matrices are the matrices
corresponding under the correspondence (2.14) to
the vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1);
that is, are the matrices

() ()

() )

By o we shall denote the first-order matrix of
partial derivatives given by the formula

=g M(3/39xj) (summation convention); (2.16)
so that 9™ is the matrix
ra a d a-
| — +i
dx® Jx®  Jx!  Ix?
(2.17)

g 6 4 4

e

dx!  dx?

9z 9

according to formula (2.15). Where typographically
necessary, we shall write this operator as d(\u).
Note that the transformation x — lx of the variables
x= (wo,%1,%2,%3) induces the corresponding spin-trans-
formation o™ — @iy M of the “partial derivative”
matrix 0*; here u=o(l). It is also convenient to intro-
duce the spin-invariant “spinor-metric” matrices

€19, GMM, €n1u2, et

all given by the matrix

( 01
—1 o) '
Where typographically necessary, we shall write these

matrices as e(A\,\2), etc. (The “invariance” of these
forms appears in such formulas as

(2.18)

1A YA UNM = Uag N — UM UM = ENphg,

valid for every 2X2 unimodular matrix %*".) In terms
of these “metric forms” we shall “raise’” and “‘lower”
spinor indices A and u in the manner customary in
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tensor analysis. We note especially the formula

oMY = g [,

€ N = V[,
which follow immediately on taking the determinant
of the matrix (2.17) and which will be useful later,

By €n::aadr’eenn, we will denote the symmetrized
sum

(2.19)

(VRS ¥ CIERRD Y4
1
== 3 enade(Ao ki) - - r e i) (2.20)
nl

taken over all permutations (i;-++%,) of (1---n); the
symbol e€u1---unu1’-+-un’ will be defined in an exactly
corresponding way. By 91+ -anui-r-un we will denote
the similar symmetrized sum

1 SR PY SR
1
== T 80 ui)dMayutic) - - -9 Npypiin).  (2.21)
#ni

Another useful fact about the representations
(m)X (72) is the following: The representations of the
type (n)X (%) (that is, those representations equivalent
to their own complex-conjugates) may be written in
another way. The representation (#)X (%) is the
representation of £, by tensors g/t'*'» symmetric in
Jiv--jn» and satisfying @?%'- inGjyj5=0 (where Gjisa
is the Lorentz metric form); these tensors are to
transform according to the law

1o d TUERRT I S . in’
gt in— gnl 1nl“,11...l]nm’

lE £, denoting a generic Lorentz transformation.

3. AXIOMATIC DEFINITION OF FREE
FIELD THEORIES '

After this hurried summary of some more or less
familiar mathematical preliminaries, we introduce the
mathematical axioms which are to define the physical
theories forming the objects of our study. We shall
take a relativistically invariant local quantum field
theory to be defined by-

(a) A set of linear operators y,(x) (field strength
operators) in a Hilbert space H, defined for all & E*
and all & in a finite set of indices [the operators ¥, (x)
are actually not functions but distributions in their
dependence on x; this technicality like many others
will be ignored in what follows]. For & H, [vfa(x)v]
signifies physically the expectation value of the «
component of the field strength at the point «.

For notational convenience, we shall suppose that the
fields ¢o(x)* are included among the fields Y. (%), so
that for each o there exists an @=4 such that

Ya(x)*=¥s(x).
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(b) A finite-dimensional linear representation RA(J)
of the group £,, and a unitary representation U(e) of
8p in H, such that

RATU Wale™2)=U (Wa(@)U (e).

This axiom expresses the extended Lorentz invariance
of our theories; that is, the homogeniety of space-time,
in the usual way. We have here made the customary
assumption that R.f depends only on the £ part of ¢;
le., that translations do not call for change of field
components.

According to a theorem stated previously, the
representation R.f may be decomposed into the direct
sum of irreducible representations; we will assume that
this has been done, so that the indices o are divided into
various classes, and RP=0 if a and B belong to distinct
classes. Note that we do not assume that the representa-
tion R is irreducible itself, but only that it has been
written as the sum of irreducible representations in the
manner just stated.

(c) By Stone’s theorem, the four-parameter group
U(x — x-a) of unitary operators may be represented
in terms of a set of four self-adjoint infinitesimal
generators through the formula

U(x— x+a)=expli(apP’— - - —a P

The set P* of self-adjoint operators is called the four-
vector of momentum operators, and in particular P is
called the energy operator. We require (for physical
reasons) that the energy operator be semidefinite, i.e.,
that P°2>0. It follows at once by Lorentz invariance
that we have P¢x,>0 for every positive timelike
vector x.

Next we have an axiom which expresses at once the
customary “law of causality” as it would apply not
only to free but also to coupled fields, and expresses
at the same time the “freeness” of the fields.

(d) For each pair o, 8 of indices there exists a sign
a{a,8)==1 and a ¢ number (scalar) valued function
Fas(%,2") such that

[‘pﬂ (x); ¥s (x,)]’(ﬁ;ﬂ) = faﬂ (x:x,)

and such that fos(x,x")=0 if x—x' is a spacelike vector.
It is also assumed that o(e,8)=¢(a',8)=0¢(a,B) if the
indices & and & belong to the same class and the
indices 8 and B’ belong to the same class,

Here we have written [4,B],,=[4,B],=AB-BA,
and shall write [4,B] when one of [4,B]; is meant
but it is desired not to specify which in particular,

The assumption that [Y.(x), ¥s(x)]=0 if x—z' is
spacelike is the ordinary “causality’”’ assumption which
applies as well to “coupled field” as to “free field”
theories. The additional assumption contained in
axiom (d) is the assumption that the function [¥.(x),
¥s(x’) ] is a scalar-valued function. This very restrictive
assumption defines the fields as free fields, from the
point of view of the present paper.
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In addition to the four explicitly stated “algebraic”
axioms (a)-(d), it is well to note certain additional
assumptions which will be made implicitly in the follow-
ing analysis. In the first place, we suppose the operator-
valued distributions ¥.(x) to be tempered distributions,
This assumption justifies the uses of the Fourier
transform to be made in what follows. The carrier of
the Fourier transform of the distributions ¢, (x}is, by the
Lorentz invariance of our field theory, a closed Loreniz-
wnvariant set. We shall assume in what follows that this
set is the union of a finite collection of the Lorentz-
invariant hyperboloids Z,, 2,%, and Z,~. This corre-
sponds to the assumption that the “mass spectrum” of
the theory under consideration is discrefe.

It is well to note that our aim is to uncover the
algebraic structure of theories satisfying axioms (a)~(d),
and that in consequence our reasoning will be formal
and algebraic, rather than fully rigorous. We shall
emphasize the algebraic side of the problem, and let
the technical side fend for itself. There should, however,
be no great difficulty in supplying missing technical
axioms and deductions, so as to perfect this side of

© our arguments.

Having stated our four principal axioms we are in a
position to begin our analysis.

4. DEFINITION OF EQUIVALENT THEORIES.
STATEMENT OF RESULTS

It will be shown in the present paper that theories
satisfying axioms (a)-(d) of the previous section can,
after systematic utilization of simple algebraic trans-
formations, be written in a uniquely determined
canonical form. The following definitions, fundamental
to the subsequent analysis, are intended to specify
the precise nature of the allowed transformations.

Definition. Two free-field theories satisfying axioms
(a)~(d), transforming according to representations R.*'
and P#& of the proper Lorentz group and with field
operators ¥, and ¢s will be called equivalent if

(i) Y« can be written as a Lorentz-invariant linear
combination of the partial derivatives of ¢ with
constant coefficients

Va=Zags1- - isP adir - Dinds,
the coefficients ¢ satisfyiﬁg the scalar transformation law
cir-- b =61 5 @ PeB () Ra® (Dl - - L
(i) ¢p can be written in the same way in terms of y,.

Were it not for the occurence of fields corresponding
to particles of mass zero, then, allowing only transforma-
tions of the type described in the preceding definition,
we could show that every field theory satisfying the
“free-field” axioms described in the preceding section
could be written in a drastically reduced canonical form.
In treating fields “of mass zero” however, we need a
looser definition than that given previously, which we
state as follows.
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Definition. Two free-field theories satisfying axioms
(a)-(d), transforming according to representations
R~ and P# of the proper Lorentz group and with
field operators ¥. and ¢s are called semiequivalent if
there exists a theory of the same sort with field operators
1y such that

(i) the theory with operators y. is equivalent to
the theory with operators u,;

(ii) the fields ¢z can all be obtained by repeated
application of the four-dimensional gradient operator
to the fields 7,.

The sole difference between ‘‘equivalence” and
“semiequivalence” of {¥,} and {gg} is that in the
latter case, formulas expressing ¥, in terms g must
involve integrations as well as differentiations. In
momentum space, this is a matter of small consequence,
and the physical content (structure of spectrum, etc.)
of two semiequivalent theories is identical.

Allowing transformations of the type just described,
we shall show in the subsequent sections of the present
paper that every field theory satisfying the axioms of
Sec. 3 can be written in a canonical form. More precisely,
we shall establish the following theorem. ’

Theorem. Let there be given a Lorentz-invariant
quantized field theory of free fields, with field operators
¥, satisfying the axzioms of Sec. 3, especially axioms
(a)-(d). Then a second semiequivalent theory with
field operators ¥, satisfying these same axioms may be
found, such that in addition:

(1) Every field componenty, satisfies a Klein-Gordon
equation [ W.=m%,, where m=m(a) >0.

(2) I mla)=m(B), [Va(®), ¥o(=)1=0.

(3) The field components ¥, consist of a family of
fields ¥a1-- 2P, n=n(y), of the indicated Lorentz
transformation, together with the Hermitian conjugates
of these fields.

(4) The field components {ya}={¥rs-- 2"} with
m(a)=m>0 all satisfy the reality condition.

’}"ﬂl .. ,“n"(i)__-__- T"anlh .. 'al‘n)‘”d’)‘l‘ . ')«n(j).

Moreover, these same field components have commuta-
tion relations given by the formulas
(5)  [nm-aa@(@), a2 (2)]=0
if 7= 7;
D’/XP . ‘)\n(j) (x), 1//)\1' .. .)\"’(j) (x’)]

=% EN  hg, M- A D] (x—x')

with o (a,&) =0 (a,0) necessarily equal to (—1)»*,

(6) The field components {Y.}= {7} with m(a)=0
transforming according to the representation (0)X (0)
of the Lorentz group satisfy the reality condition
¥ 7=y¢@* and have the commutation relations

W2 (#), y® () ]-=0 if j=k
[ (x), ¢ (3) L= —iD® (x—').
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(7) The field components {¢.}={¥ri- 2.7} with
m(a)=0 and #>0 all satisfy the first-order equation
(transversality condition)

Mg - - AP (2)=0,
and have the commutation relations
W12 (@), ¥ar'-- 2w ® () ]=0;
[ 2n® (&), - " ()] =0
if 75k,
o 2@ (), Y- (2') ]

=4"HIn w1 DO (= 2"),

with o(a,@)=o{a,a) necessarily equal to (—1)"H,
(8) All the field components ¥. are linearly in-
dependent.

" Thus, the “invariants” describing a theory written
in canonical form are simply

{(a) a set of masses (mass-spectrum);

(b) for each mass, a spin (spin-spectrum);

(c) for each pair of mass-spin combinations, a
sign ¢ equal to 1 (specification of commutation or
anticommutation relations).

Two theories for which (a)~{c} turn out to be the
same when the theories are written in canonical form
are semiequivalent. Since masses, spins, and the signs
o of (c) can be arbitrarily prescribed, we have before us
a systematic and unredundant classification of all
free-field theories.

5. SEPARATION OF MASSES

The general theorem of the preceding section will
be proved by a succession of reductions; that is, by
exhibiting a sequence of equivalent theories, each of
which has more of the formal properties listed in this
theorem than did the previous. In the present section,
we take a first essential step, by showing that each
field theory satisfying the axioms of Sec. 3 is equivalent
to a theory in which each field component satisfies a
wave or Klein-Gordon equation.

It is clear from Lorentz invariance that the function
fog of axiom (d) depends only on z—x'. From the
expression for f given in formula (2.8) we have

W™ @), ¥5(@)]= fos™ (=) (5.1)
Thus

E‘l’a(m) (x)’ 'pﬂ(m) (x')]m faﬂ(m) (x—xl) (52)
while

[a(™ (), ¥ (6)]=0 it mem!.  (5.3)

Since the mapping f— f{™ is real, it follows that
(™) =y, Thus the collection ()™, (Yu)(my of
fields satisfies axioms (a)-(d). According to formula
(2.6), the field ¥, can be reconstructed as a linear
combination from the fields Y™ and (Wa)(m. By
formula (2.8), the fields ¥{™ and a)m can be
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written as Lorentz-invariant linear combinations with
constant coefficients of the partial derivatives of ¢..
Thus, the theory defined by the system of fields
(o)™ and o) (m is equivalent to the theory defined
by the system of fields .. [It should be noted that in
drawing this conclusion we have implicitly assumed
that for each of our original field components o,
Yal™=0= (Yu)(m except for a finite collection of
numbers m. As was pointed out at the end of Sec. 3,
this assumption must be regarded as an axiom supple-
menting axioms (a)-(d).]

Thus, upon passing from our original theory to an
equivalent theory, we may assume without loss of
generality that for each index « there exists a real
number m and a positive integer & such that either

(Wa—m*Ya=0, m>0 (5.4)

Wat-m?)Ya=0, m>0; (5.5)

the number #, the integer £ and the case (5.4) or (5.5)
depending only on the class of the index a.

Our next aim is to show that the integer % in (5.4)
and (5.5) can be taken equal to 1, so that every field
component satisfies an equation of Klein-Gordon type.
To prove this, we require the following lemma.

Lemma. Suppose that a field-operator component
Yo x) satisfies

or

[Wa(@), Y8 (') Jotr=0,

where 8=a&. Then it follows that ¥, (x)=0.
Proof. First consider the case o(a,@)=-+1. In this
case, our hypothesis gives

V(2™ (2)+ ¥ (@)a(x)=0.

Since both terms in the preceding equation are positive-
definite operators, it follows at once that ¥.*(x)¥.(x)
=0, and hence that ¥.(x)=0.

Next consider the case o(a,@)=—1. Let ¢.(p)
denote the Fourier-transformed field

Yulp)= 2m)2 f o2y (x)d%.

It follows at once from Lorentz invariance [cf. the
statements of axioms (b) and (c), Sec. 3] that

exp (i, P*Wa(p) exp(—ia,P*)=y.(p) exp(ia.p*).
Thus, differentiating with respect to @, we have
Pipa(p)—Ya(p)P*=pda (). (5.6)

Thus, if v, is a vector in Hilbert space such that Pry,
= gky,, it follows that

Pila(p)og]= (¢"+ ") [¥al(p)ve]. (.7

It follows in exactly the same way that if 9, is a vector
in Hilbert space such that P4,=g"v,, then

Pry.* (v )= (¢*— P e (?)”q]- (5.8
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Now, by axiom (c), it follows that the eigenvalues
[¢1=[¢"¢"q%¢?] of the operators P* satisfy ¢°>0.
It follows by Lorentz invariance that these eigenvalues
[4%q%,4%,¢°] always define a positive timelike or null
vector. Thus, if p* points out of the positive light cone,
it follows from (5.7) that [Ya(p) J™v,=0for  sufficiently
large. On the other hand, since our hypothesis gives

Va(PWoa™ (9)—¥a* (P Wa(2)=0,

in the present case o{a,@)=—1, the operator y.(p) is
normal. Thus, it follows that ¥.(p)v,=0 whenever p
points out of the positive light cone, Similarly, y.*(p)v,
=0 whenever p points out of the negative light cone.
Since, for a normal operator N, N»=0 if and only if
N*y=0, it follows that ¥.(p)v,=0 whenever p points
out of either the positive or the negative light cone.
Since the eigenvectors v, of the operators P* form a
complete set, it follows that Y. {p)=0 whenvever p=0.
Thus ¢.(x)=0. Q.E.D.

By using this lemma, we may prove that if a field-
component operator yo(x) satisfies (((]—m?)Rpa(x)=0
for some positive integer k, then it satisfies (((]—m?)
X¥a(x¥)=0. The proof is as follows. Consider the
expression :

[Wa(®), ¥8(2") Jocapy-

By Lorentz invariance, this function of the variables
%, 2’ depends only on x—2/, so that we may write

[Wal®), Ya* (&) 1= fes(x—2").

Suppose first that k=2v is even. On applying the
operator ([[]—m?* to Yu(x), it follows that ((]—m?)*
X fag(x)=0. On applying the operator ([ _]—m?)" to
Ya(x) and ((J—m?)" to ¥.*(2"), it follows that

[O—me(®), (CJ—mHa*(")]
= (_l.— mg)'{([jx' - m2)1’faﬂ (z— z’)
= ([(—m?)* fug(x—2x")
=0.

Thus, by the preceding lemma, ((_]—m*)%.(x)=0.

What this means is that if the field component «(x)
satisfies the equation ((_]—m?)%.(x)=0, with & even,
then it also satisfies the equation ((J—m?)*/%,(x)=0.
It is an evident consequence of this that if the field
component Y, (x) satisfies the equation ((_]—m?)yq(x)
=0 (k being either odd or even), then it also satisfies
the equation ([_]—m2)*' ¥, (x)=0, where &'=[ (k-+1)/2]
is the greatest integer in (k+1)/2. Since [ (k-+1)/2]<k
unless k= 1, it follows that if the field component . {(x)
satisfies the equation ([_]—m2).(x)=0, it also satisfies
the equation ((U]—m2)¢a(x)=0,

We may show in exactly the same way that if the
field component Y. (x) satisfies the equation ((_]+m?)*
X¢a(x)=0, it also satisfies the equation ([ JHma(x)
=0.

This concludes the proof of the principal assertion
made previously.
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The following lemma summarizes the facts estab-
lished in the present section.

Lemma. Let there be given 'a Lorentz-invariant
quantized field theory of free fields, with field operators
satisfying the axioms of Sec. 3, especially axioms
(a)-(d). Then there exists a second equivalent theory,
with field operators y., satisfying these same axioms,
and such that in addition every field operator Ve

satisfies either )
(D - mﬁ)‘!/a (x) =0

+m?a(x)=0,

m=mne(c) being some suitable real number,

Our next aim is to show that case (5.10) is impossible,
and to find a more detailed canonical form for field
components satisfying (5.9).

(5.9)
or
(5.10)

6. IMPOSSIBILITY OF IMAGINARY MASSES

In the present section we shall show that if a field
component ¥, (x) satisfies the equation (C]4+m)y.(x)
=0 with m>0, then y,(x)=0.

This is most conveniently done as follows. We have
observed repeatedly that if =& the bracket [y.(x),
¥s(x") ] has the form

[a(®), ¥u* (@) ]= fas(@—2")

On introducing the Fourier-transformed field

talp)= oy [emis, 6
so that

r)= @ [, (62
it follows that

[¥a(p), ¥a*(?')]
= (2m) f ei= e P [ (2), Yu* (') Jwdiy’

= (2m) f eiePeiz" ¥ foo(x~x)dbwd s’

= (271.)—4fei(»—zf) .peizr.(pwpr)fas(x_ xf)d4xd4xl

= fup(p)8(p—2'). (6.3)

Note that since ((C]J+m2Wa(x)=0, ¥.(p) vanishes
except for p on the (spacelike) hyperboloid {p|p2+m?
=0}. Since [Ya(p), ¥o*(p’)] is Hermitian, the function
Jes(p) is real. If Ya(x)0, we can choose p such that
Ya(p) 0.

First consider the case o{(a,@)=-1. In this case,
since Yu(P)Wa™(P)Ha(p)¥a(p) is a positive definite
operator, we have fos(p)>0.
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By Lorentz invariance [cf. the statements of axioms
(b) and (c), Sec. 3] we have

exp (ia,PWa(p) exp(—ia,P¥)=Va(p) exp(iapt). (6.4)
Thus differentiating with respect to ¢ we have
Pa(p) —da (D) Pr=pa(p). (6.5)

Thus, if v, is a vector in Hilbert space such that Pty,
= gk1,, it follows that

PlYa(p)ve]= (g*+1*)[¥a(p)o.].

Since by axiom {c) the eigenvalues ¢* of the operators
P satisfy ¢° >0, it follows that ¢ (p)v, =0 if (g+ p)“<0
Slmﬂa,rly, Y{p)*v,=0 if (g—p)*<0. By Lorentz invar-
iance, Yq(p)v,=0 if the vector g+ can be mapped by
a proper Lorentz transformation I&&£, onto a four-
vector 7 such that °<0. In particular, ¥.{(p)r,=0 if
p+q is spacelike. Similarly, ¥.(p)*r,=0 if p—gq is
spacelike. For any g, there exists a p on the spacelike
hyperboloid p,p*= —m? such that both p+q and p—gq
are spacelike. Thus, there exists a  such that ya(p)v,
=ya(p)*s,=0. Since then O0=[Va(pWa*(p)+¥a*(p)
Xba(P) Jog= fus($)8(0)v, and fas(p)>0 has been shown
previously, we have a contradiction. This contradiction
proves the desired result in case o (a,a@)=+1.

Next consider the case o{a,d)=—1, and again let
B=é. Here we will consider the cases faus(p)=0,
Faa($)>0, and faa(p) <O separately.

If fus(p)>0, we reason as follows, If v is a vector
such that ¥.*(p)v=0, we have

[Wa* (£)0]*= (e (p)a (p)*2,0]

=[Ya* (P)a(p)v,0 ]+ fus(£)3(0) (v,2)
= [[¥a(p)][*+58(0) fas (8) [2[l%,

(6.6)

so that v=0,

Now, the vector p=[po,p1,p2,ps] lies on the spacelike
hyperboloid p?=—m? It follows [cf. formula (6.6)]
that if v, is 2 nonzero vector in Hilbert space such that

Pry,= gfy,, then
Pya* (?)”qj = ("= ") [¥a(p o] (6.7)

Now, by axiom (c), it follows that the eigenvalues
[¢*]=[¢"q"¢%q%] of the operators P* satisfy ¢°>0,
Therefore, by Lorentz invariance, these eigenvalues
define a positive timelike or null vector. Since the
vector p points out of the light cone, it follows that
[¥a* (p) Jv,=0 for k sufficiently large. By the foregoing
9,=0. This contradiction shows that f.s(p)>0 is
impossible, Similarly, fus(p) <O may be shown to be
impossible, Hence f,s(p)=0. But then, by the first
lemma proved in the preceding section, ¥a(x)=0.,

This proves that if (J4+m*Wa.(x)=0, and m>0,
then ¥a{x)=0,

Alternative (5.10) of the final lemma stated in
Sec. 5 is consequently impossible; so that in our
subsequent analysis we have only to consider sets of
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fields satisfying either the equation
[¥a(x)=0

O—m*Wa(x)=0, where m=m(2)>0. (6.8)

Field components satisfying (6.8) will be called fields
of positive mass; field components satisfying (6.7) will
be called fields of zero mass.

Our next aim is to find a detailed canonical form for
our fields. We shall first analyze the somewhat simpler
case (6.8) of fields of positive mass, and then analyze
the fields of zero mass. But before any of this is done,
we shall need some results on the sign o(a,y) (related
to the theorem of Pauli on spin and statistics). The
next section is devoted to establishing these results.

(6.7)

or

7. LEMMAS ON THE SIGN o(a,y)

It has been observed that the scalar-valued function
[We(x), ¥a(x")] depends only on the difference x—=z'.
We may consequently write '

[Wa(®), ¥ (&) = far(x—2').

If we pass to the Fourier-transformed field,

Ya(p) = (2m)2 f &2y (x)d%, (7.1)
so that, writing 8=a, we have
Vot ()= (2m)? f ooy ()
=@t [eemp@an,  (12)

it follows [cf. formula (6.3)] that, writing »=§, we
have

[ (B)r*(0) 1= far (D)8(p— ")
[Wa(2) ¥ (2') 1= far (£)3(p+2")
e () ¥a*(2) 1= fus(2)0 (p—#'),

(7.3)

where

Far(®)= (200 f 657 foy (),

Our main aim in the present section is to prove that
[Ya(x) ¥y (") 50, then o(a,)=0(y,n) for every field
component ¥,(x). To do this, we shall first establish
the following.

Lemma. If [Y.(x), ¢ (x")]520, where v=17, then
o(e,7)=0(a,@). ‘

Proof. On passing to the Fourier-transformed fields,
we have (7.3).

First consider the case o(a,&)=-1. Then clearly
Va(p)We* (9)Hda* (PWa(p) >0, so that by (7.3), if =4,
we have f.a(p)>0 for each p. Moreover, by (7.3)
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Ya(p)*=0. Choose some particular p such that fo,(p)=0.
Then, putting 4 =v.(p)/[ fas($)8(0) ]}, we have 42=0,
AA*+A*4=1I. Hence, by a well-kknown result, we
may write Hilbert space as an orthogonal direct sum
H®H of two replicas of the same space H, in such a
way that when this is done A is represented by the

matrix
00
(")
10

Suppose that o(a,¥)=—1. Then, putting B=y,(p),
we have [4,B] =0 by (7.3), and [4,B*]_=+I,
where 7=[8(0) ] fur (p)/[ fus(p) . Since [4,B] =0, it

follows that B is represented by a matrix

(7.4)

e 0
5-(, ) 9
Then [4,B*]  is represented by the matrix
—b 0
( 0 +b) ’ (76)

and hence can only be equal to 71 if 7=0. This shows
that our assumptions imply fa.(p)=0; and this con-
tradiction proves the present lemma in case o (a,@)= +1.

Next consider the case o(a,@)=—1. Choose some
particular p such that fa,(p)0, where as before v=7.
Here we shall consider the two subcases fus(p)=0
and f,s(p)#0 separately. First suppose that f.s(p)=O0.
Suppose for the sake of definiteness that f.s(p)>0;
the proof in the case f,5(p) <O is similar. Then, putting
A=va(p)/[fus(p)3(0)}}, we have AA*—A*A=I
Hence, by a well-known result ovr Hilbert space may
be represented as an infinite direct sum HOH®H® - - -
of a sequence of replicas of the same space H, in such a
way that when this is done 4 is represented by the
matrix

0 0
0 0
VI 0 (1.7)

0 V3

'
1l
loomo

Let J; and K denote the operators defined by the
matrices

1t 0 0 0
0 -1 0 0
J=|0 0 1t 0 : (1.8)
o0 0 0 -1
(ont 0 0
o an o
K=\ o 0 @y (7.9)

Then clearly 4=KA:K~, where the operator 4, is
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defined by the matrix

A 1= (7.10}

foomo
omoo
I mooo

Now, on operator C; commuting with 4, is readily
seen by examination of its matrix to have the form

Co 0 0 0O
C1 £y 0 0
Ci={e ¢ ¢ 0 -], (7.11y

C3 Ca €1 Cg

ie., to have the form Ci=co+c1d1+c4 -+ - - -, where
Co, C1, C2, - - etc., are linear transformations in H, It
follows immediately from the formula 4=K4,K!
that an operator C; commuting with 4 has the form
C=col+c1A+c2A%+ - - -, where cq, ¢1, ¢, -+ etc,, are
linear transformations in H. It is clear that 41/ = —JA1.
Hence, since J=KJK~', AJ=—JA. Consequently, an
operator anticommuting with 4 has the form c¢oJ
+61JA+62JA2+ RN

Suppose now that o{e,y)=-+1. Then putting
B=1,(p), we have [4,B],=0 by (7.3) and [4,B],*
=1, where 7=[8(0)1}fw ($)/[ fua($)}}; note that we
continue to write v=+4, Thus B anticommutes with
A and has the form B=c¢J+c1JA+c2JA*+ - - -. Hence

[4,B*],= é a4, (4545,

Since J=J*, this may be written as

[4,B],= 3 o[ (A%)T+(A%)}T 4]

=0

= 5 a4, (A*LT

k=0

= 3 ke (A¥)-1.

k=)

It is clear from the equation (4%)/=K1(4*)K that
none of the matrices in this last sum but the matrix
CyJ have nonzero diagonal elements. And then from
the form of the matrix J, it is clear that this sum cannot
be a multiple of the identity matrix unless it is iden-
tically zero. Thus, if [4,B*], =11, it follows that +=0.
This shows that our assumptions imply fu(p)=0;
and this contradiction proves the present lemma if
o(e,@)= —1 and fus(p)540, where 8=a.

If o(e,8)=—1 and j.s(p)=0, where f=4, it follows
from (7.3) that the operator y.(p) is normal. Let
A=ya(p), and, supposing that o(ay)=-+1, put
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B=y,(p), so that B*=y,(p), where v=v. Then by
(7.3) we have [4,B],=0 and [A4,B*],=7I, where
7==8(0) fur (p). The operator 4 is normal. Let v be an
eigenvector of A4, belonging to the eigenvalue X. Then
clearly 4 (Bw)=—B4n=—A(Bv). Hence Bm is an
eigenvector of 4 belonging to the eigenvalue —A.
This shows that, if E(e) denotes the spectral projection
of the normal operator 4 corresponding to the subset e
of the plane of A, then BE(e)=E(—e¢)B. Since the
projections E(e) and E(—e) are self-adjoint, it follows
that B*E(e)=E(—e)B*. Since 4=/ AE(d\) by the
spectral resolution theorem, it follows that B*4
= —AB* Thus [ B*,47],=0, so that our assumptions
imply fu(p)=0. This contradiction proves our lemma
in the final case o{a,@)=—1, f5(p)=0. Q.E.D.

Corollary. If [Ya(%)¥(*)Jsem#0, then o(e,y)
=a(a,@)=c(v,¥).

Proof. The first equation follows if we put 7 for v in
the preceding lemma. Since o(ey)=oc(v,2), the
second equation follows by symmetry. Q.E.D.

We may now generalize the preceding corollary, to
put our result on the sign o (a,y) into its most complete
form. This is done in the following lemma. The reader
should note that in stating the lemma and in its proof
we write B=a.

Lemma. If [Yu(®)¥(*) @m0, where »=7,
then o(e,y)=c(a,@)=c(v,7)=0(am)=0c(8m) for every
field component ¥.(x) which is not identically zero.

Proof. Suppose in contradiction of what we wish to
establish that y, is a field component such that o(e,n)
#a(y,;m). For the sake of definiteness we may assume
that o(am)=o{a,a), o(v,n)=0(y,¥). First consider the
case o{a,@)=-+1. Then, by the above lemma and
corollary, [¥y(2)¥a(2)J=0 and [¥y(x)¥s(x)]=0,
¥, (x) commutes with Y. () and with ¢.*(x). (We have
as before, written f=a.) Again by the previous lemma
and corollary, o(e,y)=-41. Put A=y.(p)/[ fus(p)
X8(0) ]}, [cf. formula (31) and note that as in the
second sentence of the proof of the preceding lemma,
fas($)>0]. Put B=y,(p), C=y,(p), where p is
chosen so that AB*+4B*4 =77 with r different from
zero. Then it follows exactly as in the proof of the
preceding lemma. that we may write Hilbert space as
an orthogonal direct sum H®H of two replicas of
the same space H in such a way that when this is done
4, B, and C are represented by matrices

(o)
-G )
(5 )

Since AB*+4-B*4 =11, we have b=rI. Since o(y,n)
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=1, BCH+CB is a multiple of the identity. But

{ac+ca)

BC+CB= ( )
2re — (agc+ca)
can only be a multiple of the identity i ¢=0. Thus
$,{p1=0 for all #', so ¢,(x)=0. This contradiction
proves our assertion in case o{ea)=-+1.

Next consider the case o{o,@)=—1. Then, by the
preceding lemma, ¢, anticommutes with ¥u{x) and
Y5 (x). Again by the same lemma, oloeyy)=—1.
Choose 7 so that du(p)¥y*(p) =¥ {(p)*Valp)=7I with
770, We shall consider the two cases f.3(p)#0 and
fap{p)=0 separately,

If fas($)5%0, we may suppose. for the sake of definite-
ness that fus(p)>0; the proof in the case fus(p) <0 is
similar. Put A=ya(p)/[fas(p)3(0) }, B=y»(p), C=¥y
X {p"). It follows exactly as in the proof of the preceding
lemma that we may write Hilbert space as an orthogonal
direct sum HOH®H® - -+ of a sequence of replicas
of the same space H in such a way that when this is
done, 4 is represented by the matrix (7.7), and B and
C have the form B=bol+bd-+bod?t -, C=coJ
g JAAcoJ A <o 5 by, by, ¢+, €o, 61, - - -, €tC., belng
linear mappings of H into itself. Since 0=CA*+-A4*C
= e 4200 A+ 3¢ J A%+ - - -, it follows that cy=ce=c3
= oo=0) g0 that C=c¢pJ. Since AB*—B*A=ri, we
have 7I=bJ+28,4-+3b34%+ -+ ; thus B=d-+74.
Hence, BC—CB=2rcoJ4 can only be a multiple of
the identity if ¢co=0. Thus ¢,{(p")=0 for all p’, so
¥,{x)=0. This contradiction proves our assertion in
case o{a,d@)=—1, so that our assertion is proved in
case f.a{p)s0

In case o{a,a)= -1, and f.s{p)=0, where, as before,
B=a, the operator ¥, (p) is normal. We then can show,
exactly as in the final paragraph of the proof of the
preceding lemma, that fa.(p)=0, where, as before,
y=1, contrary to our assumption; and this proves our
lemma in the sole remaining case. Thus, our lemma is
genérally proved. QED.

In stating the axioms of Sec. 3, we required that the
“indices a should be divided into various classes, each
of which transforms according te a given irreducible
representation of the Lorentz group, and that o{e,8)
=g(a',f) if @, ¢’ and 8, 8’ belong to the same class.
Now that we have proved the preceding lemma, it is
seent that if we put two 8, 8 indices into the same
family whenever o{a,8)=0(a,8") for all 8/, then [¥s(x),
Yo (x")J=0if B and 8’ belong to distinct families.

On summarizing the work of this section and the
previous sections, we see that we have proved the
following lemma:

Lemma. Let there be given a Lorentz-invariant
quantized field theory of free fields, with field operators
satisfying the axioms of Sec. 3. Then there exists a
second equivalent theory with field operators o,
satisfying these same axioms, and such that in addition:

FIELDS 281
(i} Every field operator ¢, satisfies {{J—m)yn(x)
=0, m=m(a) being some suitable real number,
(ii) The indices o may be subdivided into families,
which may in turn be subdivided into ¢lasses, such that

(a) o(a,8) depends only on the families of &
and §;

{b) & and & always belong to the same family;

{c) Each [Yulx)s(+)]=0 unless « and B
belong to the same family;

{d) Each class of indices transforms according
to some certain irreducible representation of the proper
homogeneous Lorentz group.

8. DETAILED ANALYSIS OF THE FIELDS
OF POSITIVE MASS

We are now in a position to complete our analysis.
In the present section we study field components of
positive mass; field components of zero mass will be
analyzed in a subsequent section. We consider a field
theory satisfying the axioms of Sec. 3, and having the
additional properties noted in the final lemma of the
preceding section. By Lorentz-invariance, the scalar-
valued function [Ya (x),¥s(x") Jota, s must have the form

(o (@) e (x) 1= fapl—2"). 8.1
If [ ]—m{e)* We(x)=0 and [[J—-m(8)* Ws(x)=0, then

clearly
(O m(@)*] fap(x)=0=[[~m(8)*fos(x).

Thus [ale)ds(s’Y]=0 unless m{a)=m(B). We may
consequently suppose without loss of generality that
all the fields ¥ whose indices « lie in a given one of
the families of the final lemma of the preceding section
satisfy (J—m",(2z)=0 with a value of m depending

-only on the family to which o belongs,

In the present section, we analyze o given family for
whichm>0, and, unless the contrary is explicitly specified,
consider only indices o, B, elc., which lie in this parliculer

Family.

We have then ([ J~m?) fas(x)=20.

Thus, the function f,s(x) is determined by its value
and the value of its normal derivative on any plane
t==constant. By our axioms, f.s{(x)=0 if » is spacelike.
Thus fas(x,0)=(3/80) fus(x,0)=0 for x#£0. By a well-
known theorem in the theory of distributions,

' a
fuﬁ(xy0)=Auﬁ(g;;)3(X) ;
| (82)
ifaa(x,0)=ﬂw(£)5(x);
at dx

where A.s and A.g are partial differential operators of
finite order with constant coefficients in the space
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derivatives 9/dx. Since [_]fus=m2f.g, it follows that

fa,s<x>=Aaa(:—x)ux<m>(x>+xaﬂ(:—x)v<m><x>, (8.3)

where D;™ and D are solutions of the equation

D=m?D with initial condition

'}
Dy (x,0)=8(x) ; a—Dl"”) (x,0)=0
14
5 (8.4)
D™ (x,0)=0; —D"™(x,0)=5(x).
a1

Since evidently D™= (3/3t)D‘™, it follows that
fas may be written in the form

Jas(®) = (Gapt Cap™® ;- Gap™ 7201050 - - - ) D™ (),

where the matrices of coefficients a%1"* % may be taken
to be symmetric in jy- - - fi, and, since D¢ =m2D("
to satisfy @qs™?#Gjyi=0. Here, Gjijz is the Lorentz-
metric form Gija=0 for j17#js Goo=1, Gi=—1,
i=1,2, 3.

Let {¢.} be a class [cf. the axioms of Sec. 3, especially
axiom (b), second paragraph] of components of our
quantized fields, the index « belonging to the irreduc-
ible representation (m)X(#) of the Lorentz group.
For explicitness, we shall write the class of indices {a} in
the form {a}={A 1" ‘Mwp1- - -5}, A\, p=1, 2; and in the
same way write the field componentsy, as ¥y ap1- - uj.
When we adopt this notation, the transformation
matrix Rg*(1) takes on the standard form s - - s’
X@u* - - +@u#’, where u is the spin matrix o(J)
representing the ILorentz transformation /. Then
consider the set of fields obtained by partial differentia-
tion:

(8.5)

(8.6)

According to the Clebsch-Gordan formula, these
fields {which transform according to the representation
(1L (R)® (71)], where ji=j—1} may be written in a
Lorentz-invariant way as a linear combination with
constant coefficients of fields

XML+ NEp2e == €4 BN - - A1« - “uje

1 VTR VAR TR PRWMFEL I | Tc QY7 CLRTS VR T PRR PR

which transform according to the representations
(A+1)® (1) and (A—1)® (41), respectively. (Note that
“Lorentz invariant,” in the preceding sentence,
means that the constant coefficients spoken of there
remain unchanged if all the fields Xaape s uj;
\[/)\r c o Nk41m1" Bj—1; and \1/)\1- ceMp—1ulc 0 cpj—1 are simulta-
neously transformed in the manner which their sub-
scripts indicate.) Moreover, according to formula (2.19)
we have

WAL M- - =2 WAL- - M e - ouo
= M e I OMAL - M1 o

8.7
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so that ¥a;---Mup---w; can be written as a Lorentz-
invariant linear combination with constant coefficients
of partial derivatives of the fields ¥a;-- Meprs1- - njmr
and ¥ag-« -M—1p1- - wj—1. Proceeding inductively in this
way, we find that there exists fields ya;-- -2 and Yur- - un
belonging, respectively, to the representations (k)@ (0)
and (0)® (j) of the proper Lorentz group £,, which
are invariant linear combinations with constant coef-
ficients of the partial derivatives of the field compo-
nents Yaj---Maup---uj, such that the field components
YA1- - M- -nj are in turn invariant linear combinations
with constant coefficients of the partial derivatives of
the fields ¥a1- - 2, and Yu1- - -us. Hence it follows that our
original quantized free-field theory is equivalent to
one in which all the field operators ¥, which satisfy an
equation [ _Wa=m%,, m>0, transform according to a
representation of the Lorentz group having either the
form (k)X (0) or the complex-conjugate form (0)X (7).
The mapping

1,0)\1 D Vg (,g!#))q I VES axlﬂlaxg‘?fh\k“"://,q- . 'Mk* (88)
is an antilinear mapping whose square is
YALe N —> ONgsaOnougs « < ONgurOP P10 2420 kMg o oy
=mfn--n (8.9)

by formula (2.19). Thus, if we put J=m*g, J is an
antilinear mapping whose square is +1. Thus the field
Y may be written as

Y=1/20+7¥)+1/2i(y—J¥): (8.10)

the fields Y1 =1/2(y+J¢¥) and Yo=1/2i(y—Jy) satisfy
JUi1=y1; JY2=y,. It is again clear that passing to an
equivalent free-field theory we may replace the field
¥ by the fieldsy; and ¥, so that without loss of general-
ity we may suppose that all the field operators ;.- -a
of our theory which satisfy an equation

I:M)‘l' . .)\k=m71p)\1. Mk, m>0’
satisfy the reality condition Jy =y, i.e., satisfy

‘//#1 . '#k*= m——kaﬂl)\la”Z)\za”k)\b'p)‘l. ©Ak. (8.11)

It follows in the same way that we may suppose without
loss of generality that all the field operators yu; - - -u; of
our theory which satisfy an equation [ JWui---uj=m?
Kpw1- - -uj, m>0, satisfy the reality condition

¢)\1 .- -xj*=m“f6x1"16>\2“2- . 'a)\ﬂ""‘ll/u1 Crepge (812)

In virtue of the reality conditions (8.11) and (8.12),
it is clear that if we simply drop the field components
Yui---u; transforming according to representations
(0)X(7), and retain only those field-components
Ya---n  transforming according to representations
(k)X (0), and their adjoints, we obtain a theory equi-
valent to the theory with which we started.

To summarize : Upon passing to an equivalent theory,
the field operators of a quantized free-field theory
satisfying axioms (a)-(d) may without loss of generality
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be taken to satisfy axioms (a)-(d), to have the properties
described in the final lemma of the preceding section,
and in addition to have the following properties:

(i) Every field component ¢, satisfies the equation
(Wa=mAo, m=m(a)>0. (8.13)

(i) The field components ¥, with m{a)>0 are all
fields ¥+ . belonging to representations (n)X (0) of
the proper Lorentz group £,, and the adjoints of such
fields.

(i1} The field components {¢,} with m(e)>0 all
satisfy the reality conditions

Voo

YA A= ~OnF Wy e

(iv) The various sets {yn;-- 2.} of field components
Yo with m () >0 satisfy no relation of linear dependence.

According to the Clebsch-Gordan formula, the
representation (B)®(¥)® (»)® (7) contains a scalar
[i.e., contains the representation (0)X (0)] if and only
if #=0 and ky=k,. Now, we have shown previously

=IO M B Yy
and

—nahmalz;xz ‘e

that the expression
[‘P)‘l' . 'kk(x),\b)\l" . .)‘k,'(x’)]
must have the form
[ m@) gna - wer (27) ]
= (a)\l‘ ROV SLERES ST T/ S CEES VR0 ST 1851
+ voe @A NEY 'kk"h. . 'j"ajr . a]n+ v ‘)

XD (x—g'),

Since the function D™ satisfies the equation [ ]D¢™
=m2D(™ it is clear that we may without loss of
generality suppose the coefficients a to (be symmetric
in their indices j and) satisfy

nGii2=0,

G, being the Lorentz metric. Thus the coefficients
@ni-- N1+ w1 in transform according to thé rep-
resentation (k)@ ()® (1)@ (%) (cf. the final paragraph
of Sec. 2). If kk’, we conclude that all the coefficients
a are zero. If k=%, we conclude similarly from the
uniqueness of the invariant contained in the representa-
tion that

Arg-- N AL .)\k,/ih .-

DPM- - ~Rk(x),1f/>\1’- . ~7~k’(x')]=05>\1' (R VHE S IEERD Vi
XD (x—x'), (8.14)
where ¢ is some complex constant, and where
[V TR0 THD ST Y
1
='k; Z E()il,)\if}e(km)\izl) e f(AkQ\ik’), (8.15) :

the summation being extended over all permutations
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(i1« +in) of (1---#). Thus (14) holds if 2=F#/, while in
the contrary case we must have, even more simply,

[111)1. Y (x),'t[/)\;[" . -w’(x’)]EO, k=R . (816)

To investigate the constant ¢ in Eq. (14), it is
convenient to make some explicit calculations of the
usual sort. By do we shall denote the Lorentz-invariant
element

do=mdpdp.dps/ (m*+ pi +2”22+?32)*

on the two-sheeted hyperboloid ’m: {p*|pup*=m?},
m>0. In terms of our earlier notation for the two
branches of this hyperboloid, Z.=3 .tU2 .. The
invariant function D (x) may be represented by

8.17)

Do (x)= f D (p)ei=-2dg,
h

ki

(8.18)
where D() is an odd function of $ given on the branch
mt by

Do (p)= 11 1
? z2m(21r)3

(8.19)
Thus,
D (x—2')

’f D™ (p)8(—p, p)e= vei P dada,’  (8.20)
hm¥ hm

where 8(p,»") is the Lorentz-invariant 8 function
defined on the Cartesian product of %,, with itself by
the formula

fh $(2)¢' ()6(p,')dodo" = f 6(P)¢' (P)do. (8.21)

m" hm

By 1 Az oun @nd Pa1-- Anar- - -un We shall denote

ONL Nl in

=;}; 22 g, uin)dNgypiz) - <3 (Nayin)  (8.22)
and
DAL A
1
= 2 pOvpi)pQopin) - - pnyin),  (8.23)

where a(x,,u) Oy P\ )= pru= pson./, and where the
summanon is in each case taken over all permutatmns

-1, of the integers 1---n. If Yy -, Is a field sat-
isfying the differential equation [_a;-- -xa=m3r1 - -p,
we may evidently write

g - (x)= f e Py a(p)do. (8.24)

bm
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If ¥ also satisfies the commutation relations
[¥ra- - (@) s un* (") ]
= gy -+ Anppyc ‘”nD(”ﬁ (g;;— x’)

ar- @ n - 2 (2')]

=heng- o Aphr’e - 2 DU (x—2')

(8.25)

(the differential operator being applied to the variable
x'), it evidently follows that

[¥n-- An(P) a1+ ‘J‘n*(?!)]
= ai"_l("" 1)”?"1 T Aamle ﬂﬂD(P)E(P’P’)

[‘l’)‘l .- ‘)\n(P)Ahl" . 'M'(p/)]
=bens-- anny - A D(P)S(—p, P);

for each p, p'ehm. The matrix pry.. Apuy---wn=pra is
evidently positive-definite if po>0. Thus since AA4*
+ A*A is Hermitian, (—1)"a:" is real.

If the brackets in formula (8.25) are anticommutation
brackets, and the field is not identically zero, then if
we put p=2p" with py>0in (26), it clearly follows that
(=1)mai" is positive, while if we put p=p'=—gq with
g>0 in (8.26), it clearly follows that (—1)mas™t
X (—1)»(—1) is positive. From the positivity of both
these quantities, it follows at once than # is odd, and
that e= —a't*, where a’>0.

Next consider the case in which the brackets in
formula (8.25) are commutator brackets. Since we
assume all our fields linearly independent, it follows
at once from the first lemma of Sec. 5 that ¢7%0. Put

A=a(=1)""p11,1..1D(P)8 (p,0) | 1r.a(p).  (8.27)
Then, if
(—=raiv1>0

and p°>0, then 44*—A*4=1T
(= 1)"ai1<0

and p°>0, then 4AA*—A*4=—~1
(=D (=D{—=1D"ai"1>0

and p°<0, then A4A*—A%A=1]
(=1 (=D (—1)rai™1<0

and $°<0, then AA4*—A*4=—].

(8.26)

(8.28)

Now, the Fourier-transformed operators yai--,(p)
of our theory satisfy

[P"y'ﬁh- . “M’A(P)]_"-"— P»“lp)\l. . .7\"(?)
[P iu-- '""*(P)J—= —Pifuy. - un(P),

Px denoting the 4-vector of energy-momentum opera-
tors, as has been shown previously [cf. formula (5.6)].
Thus

(8.29)
(8.30)

[P,4]=p4
[P0, 4%]=—prA*.

Hence, if x is a vector such that P’x=\x, then since the
spectrum of PP is entirely non-negative, we have

(8.31)
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Amx=0 for sufficiently large n if p° is negative and
(A*)mx=0 for sufficiently large » if p° is positive. But,
in the second case of (8.28) it follows that |A*x[?
=|Ax|*+ |x|? for each «, so that A* has no zeroes;
and in the third case of (8.29) it follows similarly that
4 has no zeroes. These cases are consequently excluded,
and it follows that (—~1)%ei"1>0, (—1)ai"'<0, so
that (—1)= is positive, » is even, and a=1{¢’ where o’
is real and of the same sign as i*. Thus, we have proved
the following.

Lemma. In case the brackets in formula (25) are
commutator brackets, then either =0, or » is even
and g=1d’, where &’ is real and of the same sign as i~

Note that this lemma and the corresponding state-
ment for anticommutator brackets are together
equivalent to the well-known theorem of Pauli in spin
and statistics.

By (ii), each of our classes of field components may
be taken to consist of a set of fields ya;. . 2,{? with a
fixed # or of the class of adjoints of such class of fields;
as n and j vary, j going from 1--.R, for fixed », the
various separate classes of fields are enumerated.

Our next aim is to examine a family of indices having
some fixed value of # more closely. By (14), we have

[t @ () ar - an® (27) ]

=CiErp- - At A DO (x—2).

(8.32)

Let {a} be such a family, and suppose that {i.}
={¥r-- 2P} is the corresponding family of field
operators, the various classes making up the family
being enumerated as the index j varies.

Then o(a,a)=0 for all a in the given class of indices;
where o=+41if # is odd, and 6= —1 if # is even by
what has just been proved. Moreover, by the final
lemma of Sec. 7, ¢(a,8)=0 for all @, B in the family.
Since

- A a = (— 1)y A A, (8.33)

and DA(x) is an odd function of x, it follows at once

from (8.25) that
(8.34)

Thus, since o (—1)**=1, ¢;x=¢x;. On taking the adjoint
of (8.32), we have

[‘0"‘1’ TTCEn * (x,),'pl-‘l v ‘Mn*(j) (x’):]

= Cjr€ur- - mnut’ - un' D (x—x").

Cin= (“-' 1)"*‘lcrckj.

(8.35)
Then, using the reality condition of (iii), it follows that
Cikewt- - unpr’ - - -pn' D (x—2)
=0 M Pua™ - O M PuM e DGy
Ken' - an' A A (3 —x)
= g (— DH(=DD (x—a"Yeur- - -pnur’~--an’
= ij(— I)H_He“l cceppy’c ‘ﬂn'D(m) (x" x’).

Consequently,

= (—1)"cy. (8.36)

Hence, if o= 41, ¢ is real and symmetric.
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If o= —1, so that » is even, then it follows in exactly
the same way that ¢z is imaginary and symmetric.

Finally then, since c¢j; has been shown to be sym-
metric, real in case o=-+1, and imaginary in case
o=—1, it follows that there exists a real orthogonal
matrix Oy such that OcO* is diagonal. On replacing
the system of fields 1. - -2,(? by the equivalent system
of fields Oxfns-- 2.9, it follows that we may assume
without loss of generality that ¢;;=0 for j>%%. Then,
replacing each field ¥a;-- 2. by a real multiple of
itself, we may assume without loss of generality that
l¢;;| =1. By what has been proved previously, we have

ci=1"L (8.37)

Thus, summarizing: Upon passing to an equivalent
theory, the field operators of a quantized free-field
theory satisfying axioms (a)-(d) may without loss of
generality to satisfy axioms (a)-(d), and (i)-(iv) of
the present section. In addition, we may suppose that
[(Wasbs 1=0 if m(a)s%m(B) or if m(a)=m(B)>0 while «
and B lie in distinct classes of indices, while if {ya;. - an}
={¢o} is any given class of fields with m(a)>0, we
may suppose that o(a,d@)= (—1)", and

[on- - an(@) - ' (1)

=imtlens . apgny’ - A DI (x—x').

9. SOME SPECIAL EXAMPLES OF FIELDS
OF POSITIVE MASS

The best-known examples, aside from the trivial
case of a scalar field satisfying the Klein-Gordon
equation, are those (Majorana and Dirac cases) related
to the Dirac equation. In the present notation, the
Dirac four-spinor field is a pair ($ny,) of classes of
fields, transforming according to the representations
(1) and (1), respectively. The Dirac equation may be
written

ap)‘lf)\=m¢;. (9.1)
WNYp=mp,.
The commutation relations are
d [‘h\)lpu]‘l'z [‘l’)\;‘/’)\'ji-: [ll/“,lﬁ“'j.l_Eo (92)
an
[l"’)o‘//u*:]+5 —Dm= [‘pk*:‘/:n]+ >
dn* 1= —mewD™; 9.3)

[\ZM;ELM’*]-FE — My D™,

Equation (9.1) makes it evident that the field ¢ is
merely a “‘gradient” of ¢, and can be dropped. Thus, the
Dirac theory can as well be written as a two-spinor
theory, with the equations

Cl—m*r=0 94)
I:%;%'j—i': 0 (9~5)
hw* 1= —aD™, (9.6)
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The analysis in the previous sections shows that the
Dirac field ¢, of (9.4)-(9.6) allows a ‘‘decomposition
into real and imaginary part”

DB =3 —m M) ;
WO = (1/20) hr~m 0. *)  (9.7)

=P+, (9.8)

The commutation relations (9.5) and (9.6) are then
those uniquely prescribed by symmetry under “change
conjugation”

NBLRD = B i D, e, da— m0AE.

The reality condition J,*=y, which may be imposed
upon the components of the Dirac four-spinor, can be
written in two-component notation as

\1/7\= m—la)\“‘l/u*, (99)

which explains why we have chosen to call the general
equation of this form a ‘“reality condition.” Thus, the
Majorana theory, which we obtain from the Dirac
theory by imposing the reality condition (9.9), is,
from the point of view of the previous section, the
simplest theory of positive mass with spin, satisfying
the equations

ie.,

[ia=mn (9.10)
h=m"lomp,* (9.11)
[ i =—en D, 9.12)

The next higher spin case is the theory of a field ¥y
satisfying

LW =m (9.13)
Y =2 Y (9.14)
[ (@) e (&) 1= —dear joar DO (x— "), (9.15)
If we put

A=, (9.16)

so that A4 is a four-vector, then
Ll4;=m?4; (9.17)
34 ;= MM =1 =0 (9.18)

A*= (MNP )*= (o Mo e dtrn)*
=001 g 0f*
= m_2a',“)‘a,‘)"a)\“'a)"“l’l//,‘r,,,r ’
=m0 PLI0 Yuru
= 71“)‘6%“"//#’#: 4;.

9.19)
[4(x),45(=") ]

= _iﬂ'j)‘ﬂﬂ'k)"wa“)" /a“’)\lne)\)‘”, )\I)\,“D(m) (x_xl)

= —iMoNH (e exnm’— o Mo H Oy ) DO (x— 1)

= —iy(m'G—3:9;)D'™ (x—a). (9.20)
We do not bother to evaluate the numerical constant +.

Thus, the theory described by (9.13)-(9.15) is simply
the ordinary theory of the “real vector meson of
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positive mass” satisfying the “divergence condition”
374 ;=0. It should be noted that the “reality condition”
(9.14) is equivalent to the condition 4;=4;*.

10. EXPLICIT ANALYSIS OF FIELDS
OF MASS ZERO

In the present section we will complete our analysis of
the field components of zero mass. The general structure
of these fields will be most apparent if we examine a
very simple special case first: the case of a field yx
transforming according to the representation (10.1)
and satisfying the zero-mass equation [ jx=0.

It follows from the equation [ ¥r=0 and from
Lorentz invariance (compare the corresponding argu-
ments at the beginning of Sec. 8) that the bracket

[ (@)8* () 1+ (10.1)
must be given by an expression
@ ¥* () Jy=conD@ (x—2).  (10.2)

Consequently, if we put X, (x)=9,Mn(x), it follows that
[x.(x),* (") 4= — 321D (x—x")=0. (10.3)

On putting x=«" and p=), it follows immediately
that X,(x)=0. That is, in the zero-mass case, the
second-order equation [} (x)=0, together with our
other axioms, implies the first-order equation

M (x)=0!

We shall see in the present section that this phenom-
enon is perfectly general.

If we note that the initial arguments of Sec. 8 apply
as well to fields satisfying the equation [ W.=0 as to
fields satisfying the equation [ j,=m%,, it follows at
once that if {.} is a given family of fields satisfying
[Wa=0, we have

Wa(®) ¥ (") Jrap
= (@opt Aap’d -+ B 7201050+ - - - ) DO (x—2'), (10.4)

where D@ (x) is the solution of the eauations

[(ID©=0; D®(x,0)=0;

(8/06)D®(x,0)=68(x). (10.5)

As in Sec. 8, the matrices of coefficients ¢/ % may
be taken to be symmetric in ji---jix and to satisfy
a1 kG j1j,=0, Giijs denoting the Lorentz metric.
Consider more specifically a class of field components
YA1- - Aqu1- - -up transforming according to the representa-
tion of the Lorentz group indicated by the indices
displayed. If we note that by the Clebsch-Gordan
formula the representation (a)X (6)X (@)X (b)X ()
X () contains exactly one invariant quantity for g5
>n>|a—b|, and exactly zero invariant quantities
for # not in this range, it follows at once that for the
field components under consideration, we may write
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formula (10.4) more specifically as
ZS TR PR RPN VR Vel
min(a,b)

>

n=0

Z Cn€AINY’* * » EXpAp/€p1ul’ " * ¢ €unun’

Xa)\n+1' VIR .”lD(O); (10.6)

here, every subscript Aj, A/, uj, or u; which does not
occur attached to one of the symbols “€” is to be
attached to the symbol “d”; the inner symbol sym
indicates “symmetrization” by summation -over all
permutations of the subscripts A(---A;’ and all per-
mutations of the subscripts p1'- - - uo'

We shall now show that ¢, =0 for all >>0. Suppose, in
fact, that the nonzero coefficient ¢ in (10.6) with
largest subscript is ¢, and that 2>0. If $=0, then
min(e,b)=0, and we have nothing to prove. Hence, we
may also assume without loss of generality that 5>0.
This being the case, we form the field

Xyl. . .pkgxk’_‘_l. o Nai2t ‘ub

= avl)‘l e avkxkanullll)\l LR VT BRI 1. (10.7)
The commutation relations satisfied by this field follow
at once by differentiation of (10.6). We find

%
[X,,l. VRNl Agud- - ‘ﬂb,x'll' L TR LORRY, VIPPRS VX ]

k
= Z Z Cnan)q’avz)\g’- . ~avk)\k'37l1ylaﬂ2u2~ . -aﬂkuk
n=0

’ ’
Xaqﬂlav)\l Ovpyr?ntl- - A PR L

(10.8)

. r
a"lkuk akn%—l cc oAb Bn1- - 'Ma'D(O)-

The inner sum 2 here denoting a sum over permuta-
tions of the indices as in (10.6). It is apparent from
(10.7) that each term on the right-hand side contains
a factor having the structure

aul)\l’av)‘llaﬂwlaq‘“D(o) = eplpeanDD(O) s

since [ ]D®=0, the right-hand side of (10.8) is zero.
If the bracket in (10.8) is[ 7], it follows from the
first lemma of Sec. 5 that

x"l'"”kﬂ)\k-{»l“‘)\al‘?""‘b:(); (109)

if the bracket in (10.8) is [ ];, then the same
conclusion follows in an even more elementary way,
since 44*+4-A*A4 =0 evidently implies that 4 =0. Thus,
we learn in any case that

O™+ - QM - - Agut - - up=0. (10.10)

Then, differentiating (10.6) and using (10.10), it
follows that

k
Z z c,,aulx,'- . °6unx"’6y,,+1)‘"+1~ . ’611];)\"6'7;41'
n=0

(10.11)

Keugua'" * * €unpin’OMpp1- - Ap'pnt1 g’ D@ =0,
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Now, every term of the left-hand side of (10.11)
except the term n=£ contains a factor of the form

6”"+1)‘ﬂ+laxn+1. < NbBnpl .“le(O)_

Thus, again since [ JD®=0, all these terms are zero
and (10.11) reduces to the formula

€ 2 Ovint’® + » Bui 'O €usma’* + * €npu’

K ONeg1- - M1+ wa’DO =0,  (10.12)

the symbol 3~ denoting summation over all permuta-
tions of the indices Ay'- - -Ay" and over all permutations
of the indices pi’---ps’. If we apply the differential
operator gn#?’- -3y’ to the left of formula (10.12),
we consequently find that

k01 Neg 1+ - Mo My Wi 1+ - -ug’ DO =0,

i.e., that

G0+ 05arsD@=0.
Since

91+ * +0jars DO 0,

it follows that ¢;=0 if £>0, which is what we desired
to prove.
This established, we see at once from (10.4) that

[!PM' - haul- - mbWm1cma’A1’ e -Xb'*]
=001 Mure e’ D®. (10.13)
Thus, if we put '

Xnhg: - Agu1- - up= O MPA1 - Ngn1- - -,
it follows just as before that
[Xnng- - hap1- - -ubyXoma’ - - -ma’Ar’- - -Ap™* | =0,
and hence again as before that
an)‘l\l/)\l' - Ngp1- - up=0.
We may prove in exactly the same way that

avmll/)\l celaplt R 0.

(10.15)

Thus, every field component satisfying the second-order
equation [Y=0 must also satisfy the first-order
equations (10.14) and (10.15). Our next aim is to use
Eqgs. (10.14) and (10.15) to show that if @ and b are
both nonzero, then there exists a system of fields
XAg- - -Aguz: - -up SUCh that

(10.16)

Y- Aguit - up=Onu1Xhg- - Napg- - ppe

This is most readily accomplished by passing to the
Fourier transformed field ya;-- Agu1---us(p), which by
virtue of (10.14) and (10.15) satisfies

DAL a1+ wp (D) = PHFYAL - Aaur- - ($)=0.  (10.17)

On noting that the distribution ¥(p) is carried by the
light-cone $2=0 in virtue of the equation [ W (x)=0,
we realize that formula (10.17) involves the matrix
P=(p)=(puave'™), where puar=p;on? for null vectors
(po,p1,p2,03) : Since prpr=08,p2=0, it follows that

(10.14)
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P is a 2X2 matrix satisfying P?=0, P>0. Such a
2X 2 matrix may be put in the Jordan canonical form

[ o
1 o)
On taking P in this canonical form, it is clear that any
2X 2 matrix A satisfying PA=0 has all the elements in

its first row equal to zero, while any 2X2 matrix 4
satisfying AP=0 has all the elements in its second

‘column equal to zero. Thus, if AP=PA4=0, A must be

a multiple cP of P; it is self-evident that this constant
¢ is uniquely determined. Equations (10.17) con-
sequently give us

\(/Xl- R VY 'ub(?) = iﬂ)\luIX)\Z cerhap2e 'ub(?) (10'18)

with a certain uniquely determined coefficient function
x- The unique determination of x, together with the
Lorentz invariance of the field ¢, shows immediately
that x does have the Lorentz-invariant law of trans-
formation [corresponding to the representation (a—1)
®by, where b;=b—1, of the proper Lorentz group
indicated by its subscripts].

On iterating the argument of the preceding para-
graph a number of times equal to min(a,d), and passing
back from the Fourier transformed fields to the fields
in ordinary space, we find that we have established the
following conclusion: If a>b, there exists a field
Xa1---ag—p having the indicated law of transformation
under the Lorentz group such that

(10.19)

YAL - Nguls - wp=ON1p10Nan2 - - ONpupXApt 1+ - Ra

if >a, an exactly corresponding formula may be
written in terms of a field Xu;- . .wyq; that is, the fields
¢ are gradients of the fields x.

Our next aim is to investigate the commutation
relations of the fields x. Let {Ya1---xau1---up} be the
class of field components occurring in formulas (10.13)-
(10.19), and let {¢.} be any other class of field compo-
nents. Then it follows [cf. (10.4)] that

(¥ napr - (%) Wala”) ]

=ar - -)\ayl'“ub,a(a)Do(x—x’), (10.20)

where a(d) denotes a polynomial in the gradient 4.
Hence, passing to the Fourier-transformed fields, we
find

Dare- haur- - (p) Wa(p) J= ar1 - dawr i)
Xd(—p, p)DO(p) (10.21)

for all p,p'eh® as in (8.26), cf. also (8.24), (8.18), and
(8.19). This being the case, (10.17) evidently implies
that

“)‘lakl' IR PR 'nb.u(f:P)

=0=pa"an - - Aqu1- - -ebal(ip) ; (10.22)

so that, arguing precisely as in the paragraph following
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formula (10.17), we find that ¢ may be written in the
form

ax1---xa~1-~~»ua(iﬁ)
= ip)\‘lmb)\z- ©*Ngug®* uba (iﬁ)a (1023)

the b being certain coefficients. Then, using (10.18)
and the fact that p,#0, we find from (10.21) that the
field Xag- - Agua- - -up Of (10.18) satisfies

[Xnz: - xauz- - -up(p) Wea(p') ]

=br - dany- - una(ip)3(—p, pIDO(p).
By iterating this argument a suitable number of times,
and passing back from the Fourier-transformed fields

to the fields in ordinary space, we find that the field
Xa1---xo—p Of (10.19) satisfies

RSBV CORZICON

=cr- - ha,e(0) DO (x—1"),

(10.24)

(10.25)

where ¢(8) denotes a polynomial in the gradient 8. This
shows that the fields x satisfy commutation relations
of the same form as do the fields y.

If we replace each of the fields ¢ satisfying the zero-
mass equation [ =0 by the corresponding field x, we
consequently obtain a field theory which continues to
satisfy the axioms of Sec. 3. By virtue of (10.19),
this new theory is semiequivalent to the theory with
which we begin. It follows that our original free-field
theory is semiequivalent to one in which all the field
operators which satisfy the equation [ j=0 transform
according to a representation of the Lorentz group
having either the form (k)®(0) or the complex-
conjugate form (0)® (7). Our fields will also satisfy
9 MYy =0 and ;.. ,x;=0; in addition, they
may without loss of generality be assumed linearly
independent.

We may now carry over the development given in
Sec. 8 for fields of positive mass to the components of
mass zero.

It follows, exactly as in the corresponding passage in
Sec. 8 [cf. formula (8.14) and the following material ]
that [Ya(x)¥s(x’)]=0 unless either both classes of
indices a« and B transform according to the same
representation or to complex-conjugate representations
of the proper Lorentz group. In the former case it would
follow exactly as in (8.14) that

i xa @) (2]

=ceny - hni M A/ DO (x— %),

(10.26)

where ¢ is some complex constant. But then, if #>0, the
equation 9,*n; - - A,=0 would immediately imply ¢=0.
Thus we have

A1 am (@)@ M- 2 (8) =0 if n>0.

If n=0, we can decompose the field ¢ into its Hermitian
and anti-Hermitian parts, and hence, passing to an
equivalent theory, suppose without loss of generality

(10.27)
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that ¢y =y*. Of the expression

[ne - an(@) - - wa* ()],

the Clebsch-Gordan formula tells us that the right-hand
side of the general formula (10.4) can have only one
nonzero term, this term involving exactly » derivatives;
and the uniqueness of the required expression tells us
at once that

[‘hl -+ An () ,‘/-/ul' . 'un*(x’)]

= Ca)\l- e Apmlee ~ynD(0) (x-—x'), (1028)

¢ being some complex constant. Then, arguing exactly
as in Sec. 8, we show that

(a) (Pauli theorem) If the field component .
transforms according to the representation (n)X (0)
of the proper Lorentz group, then o (a,a@)= (—1)"*.

(b) Upon passing to an equivalent theory, we may
suppose that [¥.,Ws =0 if @ and 8 lie in distinct classes
of indices, while if {¢a;-- 2.} ={¥a} is a given class of
fields with m(a)=0, we have

[rs-- @)A1 (@) ]=0 (if #>0) (10.29)

[\0)\1 RV (x))‘l"*l‘l . 'Fn(xl)]
=490 - A1 D@ (x—2"),  (10.30)

if #=0 (10.30) and ¢ (x)=¢*(x) hold. (10.31)
Thus, the theorem stated in Sec. 4 is completely proved.

11. SPECIAL EXAMPLES OF FIELDS
OF ZERO MASS

The simplest example of a field of zero mass with spin
is the field ¥ transforming according to the representa-
tion (1)X (0) of the Lorentz group, and satisfying the
equations

M =0

[%)%’]*Fz 0
[rw* = — DO,

This is the two-component neutrino theory; the first
of Egs. (11.1) tells us that the “particle” is always
polarized parallel to its momentum, while the “anti-
particle” is always polarized opposite to its momentum.

An attempt to set up a theory of a vector field 4;
satisfying [ 14 ;=0 leads, as in the preceding section,
to the conclusion that A4; is the gradient of a scalar
field: A;=38;A. Thus, as is well known, the electro-
magnetic vector potential cannot be quantized if all
the axioms of Sec. 3 are required. Either positivity of
the energy, positivity of the inner product of Hilbert
space, or the status of the field components 4; as
operators mapping Hilbert space into itself, rather than
into a larger enveloping space, must be given up.

To obtain a quantization of the free electromagnetic
field satisfying the axioms of Sec. 3, it is preferable to
quantize the field-strength tensor f;; instead of the
vector potential. The representation of the Lorentz

(11.1)
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group by an antisymmetric tensor f;; decomposes, on
restriction to the proper Lorentz group, into the direct
sum of the two representations (2) and (2). The
corresponding quantities Y and X, are expressed in
terms of fi; by the formulas
= e gy o I i

o e Jis (11.2)

X = Ny lon I,
The reality condition f;;*= f;; is expressible in terms of
Y and x as

Yor*= ewlﬁ'vﬂi&"fﬂ’ J;.)‘.'l':i*
= enn’(,-wi,,”,”,J'f“.= Xyy.

Thus, the quantized electromagnetic field is determined
in our notation by a field Y\ and its adjoint, transform-

ing according to the representation (11.2) of the
Lorentz group, and satisfying the equations

8,, 2\’ =0
[‘¢/)\)\1,lp)\’)\1’]__=‘:0
[ll/)\)\',lpuul*]_E —ia)\)\l,uulD(O) .

The first of Egs. (11.3) tells us that the “photon” is
always polarized parallel to its momentum, while the
“antiphoton” is always polarized opposite to its
momentum.

(11.3)

12. EQUATIONS SATISFIED BY THE FIELDS
IN CANONICAL FORM

In the present section, we assume that we have a
system of fields in the canonical form specified in the
theorem of Sec. 4, and consider the following question:
Does our system of field operators satisfy any Lorentz-
invariant system

K
> ik 9% - - 3pa=0 (12.1)
k=0

of partial differential equations with constant coeffi-
cients? If Eq. (12.1) is valid, then since ¢(™ can be
written in the form ¢(™=P™ () (cf. Sec. 5), so
evidently is each equation

K
Y apr- 0k 81 @P™ =0, m>0. (12.2)
k=0

Thus, without loss of generality we may suppose that
all the field operators occuring with nonzero coefficients
in Eq. (80) satisfy the equation [_ly.=m%, m>0.
For Lorentz invariance, the index 8 in Eq. (12.2)
must belong to some representation of the Lorentz
group £,. At the possible cost of writing the single
equation (12.2) as a set of several equations, we may
evidently suppose without loss of generality that the
index 8 belongs to an irreducible representation of £,;
say, for definiteness, to the representation ()X (7).
The fields ¥ will consist of a set of fields y¥ag-- 2 ,®,
and a set of fields Yuy---u,* B = (Y1 - 2, P)*. Here of
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course p=p(R). Equation (12.1) may thus be written
more explicitly as

M=

K
Z (aﬂ’jl.._jk)\l'-~)\p.kail. . .ailqp)‘l...)‘p(R)
R=1 k=0

0.1t B R G Py W ¥ Y =0, (12.3)
First suppose that m>0. If we apply to this equation,
and in particular to its index 3, the process of reduction
used previously to express arbitrary field operators ¥,
satisfying [ W.=m%., m>0, as Lorentz-invariant
linear combinations with constant coefficients of
gradients of fields belonging to representations (m) X (0)
of the Lorentz group, we see immediately that the
Eq. (12.3) may be written as a Lorentz-invariant linear
combination with constant coefficients of gradients of
equations having exactly the same form, but in which
the index 8 belongs to a representation ()X (0) of
£,. It is then evidently sufficient for the subsequent
course of our analysis to suppose that the index g8 in
Eq. (12.3) itself belongs to a representation (m)X (0)
of £,.

Now, since [_y=m?), we may evidently suppose
that the coefficients ¢ and b in Eq. (12.3) are symmetric
in 71+ - jx and also satisfy the condition

ag,jijs- - -t M BGah

=0,i1j2-- - HEGAR=0 (12.4)

of “vanishing trace,” G## being the Lorentz metric
tensor. Thus, the invariant coefficients ag,j;- - " 2 F
and bg,ji---¢t " *»F are scalars belonging to the
representation (k)X (k)X (m)X (p) and (k)X (k)X (m)
X (p), respectively. We find immediately by the
Clebsch-Gordan formula that ag,jijs- -3 B=0
unless =0 and m=p, in which case ¢ must be a
multiple of eny’-- -2, ?; and that bs,jpjp- - a1 #» R
=0 unless 2=m=p, in which case 8 is a set of & indices
A1---Ax and the differential operator bs,j;--.j#t " #o:R
X@#...9% is necessarily a constant multiple of

NP2 - - O, (12.5)

Thus, the differential equation (12.3) can be written
in the form

S 8
Z a’v//xl .. -)\p(R>+ Z braxl‘” .. -8)\,,“?\0,,1 e *pp*(r)’ (12.6)
R=1

R=1

only fields ¢(® with p(R)=~% occuring with a nonzero
coefficient. If we now make use of the reality conditions,
then this equation evidently states a linear dependence
between the fields y¥a;--2,'®, and by assumption no
nontrivial linear dependence exists. It follows that
Eq. (12.6) is a linear combination of the Egs. (8.11)
and (8.12) giving the reality conditions for the fields
Y®, Thus, every Lorentz-invariant partial differential
equation with constant coefficients satisfied by the
system of fields ¥, with [ W.=m?,, m>0 is obtainable
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as a consequence from the equations [ W.=m%), and
from the reality conditions by a combination of repeated
differentiation and purely linear algebraic operations.

If m=0, we reason as follows. If we make use of the
equations d,Mn- - - =0 and MY, - - =0 satisfied by the
field components of mass zero to subtract terms from
Eq. (12.3), we must arrive at an equation having the
form

8 K
20 2 (aghr e Nt b Qag e Mg N1 s Mg P
Rwel k=0

+b5)‘1 L VN R 2 - - Neokl®* ik

X1 - ey ®)=0.  (12.7)

Now the index 8 belongs to the representation (m)® (%)
of £, The Clebsch-Gordan formula consequently
tells us that every term in the Lorentz-invariant
equation (12.7), except those for which k<4 p=m and
k=n or k+p=n and k=m, must vanish, and, indeed,
that Eq. (12.7) must reduce either to the form

8
2 e Mewre i (CRYN 1 - M B) =0, (12.8)
R=0

where ¢r=0 unless the field ¢® transforms according
to a representation ()X (0) with given p, or to the form

S
S Oviee b (R Py ) =0, (12.9)
R=0

cr being subject to this same restriction, or, if =0, to
the form

8
2001 stk (CRY P +drgy ) =0, (12.10)
R=0

SCHWARTZ

where ¢z and dr equal zero unless the field ¢® trans-
forms according to the representation (0)X (0). Now,
unless all the coefficients ¢z are zero, Eq. (12.8)
evidently implies a linear dependence between the
fields ¢®; since we have assumed these fields are
linearly independent, it follows that all the coefficients
cr in Eq. (12.8) are zero. In the same way, it follows
that all the coefficients ¢z in Eq. (12.9) are zero. In
the case of Eq. (12.10), the same conclusion follows in
the same way, once we make use of the reality condition
y=y*

Summarizing, we may state the following theorem.

Theorem. Let {¢,} be a set of free fields defining a
free-field theory satisfying the axioms of Sec. 3, and
suppose that these fields are in the canonical form
specified in the theorem of Sec. 4. Then every Lorentz-
invariant partial differential equation with constant
coefficients satisfied by our system of fields, is obtainable
as a consequence from the equations

() mdutt O ag - A= - o™
(if [ w=m? or if n=0),
M - Ny ¥ =Y g :
(i) My An=0="Nu1-- un
(if (=0 and #>0)

(iii) ¢=y* (if (=0 and n=0)

by a combination of repeated differentiation and purely
linear algebraic operations.
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It is shown that a field of null rays is geodetic and shear-free if and only if the associated family of null
bivectors includes a solution to Maxwell’s equations for charge-free space.

A BIVECTOR F*[ = —F%*7 in a normal hyperbolic
Riemann four-space, is said to be null if Fr F*=0
=Fy*F*, where *Fy;=%(—g)lerim ™. For any real
nonzero null bivector Fy;, the conditions?

_Flktﬂm]=0, Frmom=0 (1)
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denoted by round and square brackets, respectively.

determine a real null direction: conversely, for any real
nonzero null vector o;, these equations determine a real
nonzero null bivector up to a change of amplitude and
polarization,

Fry—i*Fri— ¢ (Fr—i*Fp),
where w is a disposable complex scalar. This note deals.

with the question: What conditions on a field of null
rays are necessary and sufficient to ensure that the:
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associated family of null bivector fields should include
a nontrivial solution to Maxwell’s equations for charge-
free space?

If a vector field o is real, nonvanishing, and null,
the tangent space at any point contains a two-parameter
family of real spacelike planes orthogonal to ;. For any
such plane, one can calculate the rates of rotation,
dilatation, and maximum shear under a displacement
along o By this means, one obtains three scalar
functions of the coordinates and parameters. If any one
of these scalars is independent of the parameters, so are
the other two. A necessary and sufficient condition for
this is that o should be geodetic. In that case, the
scalars may be introduced more directly as follows. On
denoting the covariant differential operator ¢?8/8x? by
a dot, writing

wr={own—*(own)}e’,

and using the expression for gesscacesgn in terms of the
metric tensor, one finds that if ¢ is null,

Zw ko= G'[ko.'z]+'l:* (0' [kd'z]).

Thus, a real null vector field o, satisfies the geodetic con-
dition, opuon=0, if and only if there exists a complex
scalar ¢ such that

{on—1*(om ) }o'= (30", 14+{)ow. (2)
On writing
Y= [20p;4‘7(p;q)— (‘TT; i+ 6)2_ (§-+ 5)2]},

one finds that the ratios o;: {:7y are invariant under any
transformation of the form o; — Ao7#0. As Dr. R. K.
Sachs has in effect shown, the rates of rotation, dilata-
tion, and maximum shear are proportional to ¢(¢f—¢),
¢+ ¢, and v, respectively.

For any nonvanishing geodetic o, if Fy; is a real
bivector field subject to (1), so is its propagation
derivative Fy;; and there exists a scalar z such that
Fri—1*Fi=2(F1;—1*Fx;). Under a change of ampli-
tude and polarization, z— z+4w. We may therefore
normalize the propagation of Fi; by demanding that

(Fkl—’l:*sz);mG""=f(Fkl_'i*Fkl)- (3)

The normally propagated field is determined up to a

change of amplitude and polarization for which w=0.
Without assuming that ¢, is geodetic, writing
m=fmn, . ¥Jm=*Fmnr  one obtains

sz+Fkw";p+F"th;p+F1”0k;p= 2J poyy,

from the covariant divergence of the first of Egs. (1),
and )
Frt-FiPop i+ FPi0p0=2%(o x* 1)),
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from the second of Egs. (1) together with 3F jzy;mie™
=2*(a*J 7). Thus, the equations

31107, 5= FiP0 o,y 0 (1) F P, 4
Frit3F 0% 5 FiPo g — o o FP=0, (5)

are equivalent to J o 3=0=%*J 40, which is a neces-
sary and sufficient condition for the existence of a

scalar @ such that
Jr—1*Ty=aoy. (6)

On transvecting (4) or (5) with ¢* and €*'™"g,, one
obtains F™"g,=0=*Fm™"¢, which is necessary and suf-
ficient for o, to be geodetic wherever F}; is nonzero. It
follows from the algebraic conditions on Fi; that there
exist a scalar & and vectors pi, T&, subject to

Froi—t*Fri=2bopry, gua=2pacn—2rufy. (7)

Hence, one finds that if ¢ is geodetic, then (4) reduces
to the nonshearing condition,

207,% ;)= (“r;r+§-+ ?)2"' (§'+§-')2, (8)

wherever Fj; is nonzero, and (5) is a necessary and
sufficient condition for Fi; to propagate normally.
Thus, the propagation vector o is geodetic and shear-
free in any null solution of Maxwell’s empty-space
equations J,=0=*J.

Suppose, conversely, that a real nonvanishing null
vector field o satisfies the geodetic and nonshearing con-
ditions (2) and (8). Let Fy; be any real bivector field
subject to (1) and (3). From (2), (6), and the con-
servation identities J*,,=0=*J%, it follows that

Je= @+, *e=(E+E) ¥ 9

By taking coordinates (x*, 2%, %) such that o*=4,* and
7370, in some region, we see from (9) that if Maxwell’s
equations are satisfied for one value of x*, then they
are satisfied for all x* in the region considered. The
conditions on Fj; are invariant under any change of
amplitude and polarization for which w is independent
of 2%, From (6) and (7), it follows that the transformed
field satisfies Maxwell’s equations wherever

ws=— (a/b+w r")/7%;

and the last equation can be solved on a three-space of
constant a% The requirement that o should be geodetic
and shear-free is therefore sufficient, as well as neces-
sary, to ensure that o is the propagation vector of a
null solution to Maxwell’s equations.
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This is the first of two papers concerned with “order properties,”
with respect to the parameter oZ, of an expansion method for the
evaluation of the bound electron self-energy AE and the applica-
tion of these properties to the calculation of the new Lamb shift
orders of a{aZ)® In*(aZ) and a(aZ)®In(aZ). The expansion method
is the free-propagator expansion (FPE); that is, the formal
algebraic expansion of the bound electron propagator or Green's
function in “powers” of the external (Coulomb) potential. The
principal result of the general mathematical analysis is a theorem
which asserts that the FPE is an order expansion for {only) those
terms of AE that are nonanalytic in the parameter w=(aZ)? and

is thus particularly suitable for the calculation of this class of
terms. A practical result of the theorem is that the new logarithmic
orders arise from only the first four terms of the FPE. The
nonanalytic part of a fixed term I, of the FPE can be attacked
directly through a consideration of Im;/,, where Im,J, denotes
the imaginary part of I, regarded as a function of the complex
variable w, on the upper side of a branch cut along the negative w
axis. As an auxiliary result, boundedness properties in momentum
space are derived for certain iterated operators related to the
FPE of the bound nonrelativistic electron Green’s function.

INTRODUCTION

N this and a following paper we shall present the
results of a mathematical investigation which had
as its ‘“‘practical” aim the calculation of the new Lamb
shift orders of a(aZ)®In?(aZ) and a(aZ)®In(aZ).! The
mathematical results are, however, more general and, in
addition to clarifying the mathematical analysis of the
Lamb shift, should be of use in the analysis of the
wider class of bound-state problems involving the bound
electron Green’s function as a component. Our plan is to
give the more general results in the present paper and
those pertaining particularly to the calculation of the
new logarithmic orders in the following one.

Technically speaking, the new orders fall into the
category of second-order radiative corrections to atomic
energy levels to arbitrary orders in the Coulomb
interaction parameter (aZ). Thus, they correspond to
the bound interaction diagrams shown in Fig. 1 called
respectively, “seli-energy” and “vacuum polarization”
diagrams.2 The self-energy diagram represents the
lowest order radiative correction to the expectation
value of the “mass operator.”

We shall consider in detail only diagram (a). The
contribution of the polarization diagram to the order
of interest is easily evaluated and will be included in
the final result.

The analytic expression for the shift AE correspond-
ing to the self-energy diagram is of exactly the same
form as the free electron seli-energy except that the

* Based on a dissertation submitted to Columbia University if
partial fulfiliment of the requirements for the degree of Doctor on
Philosophy.

1 This research was supported in part by the U. S. Atomic
Energy Commission.

1 Present address: Institute of Mathematical Sciences, New
York University, New York, New York,

1A, J. Layzer, Phys. Rev. Letters 4, 580 (1960). The In? term
was calculated independently by H. Fried and D. Yennie [4bid.
4, 583 (1960)], and by G. Erickson [dissertation, University of
Minnesota, 1960 (unpublished)].

2 Of course, both Figs. 1(a) and 1(b) contribute to the self-energy
of the bound electron. The term “seli-energy” for Fig. 1(a) is
used because of its pictorial similarity to the diagram for the
free electron self-energy.

3 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).

wave functions are bound-state (Coulomb) wave
functions and the free electron propagator or Green’s
function (p—k--m)~* is replaced by the bound prop-
agator (p—k—V+m)~. Here m is the mass of the
electron; a=iv,a,; V, is the four potential, in this
case a static Coulomb potential; p, and %, are the
electron and photon four momentum, respectively, with
the fourth component of p, set equal to 1E, where E is
the bound-state energy.

The method we shall use to evaluate AE will be the
“free-propagator expansion”; that is, the formal
algebraic expansion of the bound electron propagator
in “powers’’ of V. We shall be concerned with the
mathematical study of some of the main properties of
this expansion connected with an expansion of AE in
orders of oZ.

The free-propagator expansion, although at first
sight the simplest and most natural technique for the
evaluation of AE, has the disadvantage that it is not,
in spite of appearances, an expansion in orders of
(aZ). In fact, though the lowest order of the Lamb shift
is a(aZ)*In(aZ), corresponding to the nonrelativistic
calculation of Bethe! the individual terms of the
expansion are of still lower order.? For this reason, the
expansion was neglected as a method for the evaluation
of the Lamb shift until the recent work of Fried and
Yennie,® hereafter referred to as F-Y, in which this
expansion was used to extract successfully the two
lowest orders of a(aZ)In(aZ) and a(aZ)®. These
authors employed a special “infrared” gauge for the
photon propagator? in which the lowest-order contribu-
tions from each term of the expansion were canceled
while at the same time infrared divergences associated
with the renormalization of the first two terms of the
expansion were also eliminated. In the present paper
we shall employ the usual and simpler Feynman form

4H. A. Bethe, Phys. Rev. 72, (1947). .

§ This “‘spurious” lowest order contribution may be eliminated
by summing over all terms of the expansion (see Sec. 2).

8 H. Fried and D. R. Yennie, Phys. Rev. 112, 1391 (1958).

7 The nature of this type of gauge transformation was elucidated
by B. Zumino, J. Math. Phys. 1,1 (1960).
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(@ (®)
F1c. 1. “self-energy” and “polarization” diagrams.

of the photon propagator. The difficulty of the lowest
order terms turns out to be not at all serious for our
purposes.

The main result of the present mathematical investi-
gation is a theorem® which asserts that the free-
propagator expansion is an order expansion for those
terms of AE that are nonanalytic in w= (aZ)? and is
thus particularly suitable for the calculation of this
class of terms.® A practical result of the precise form
of the theorem is that the orders ow® In?w and ow? Inw
which we wish to calculate arise only for #» <3, while
the previously computed orders of aw? Inw'® and aw? !t
arise only for » <2. Here, # is the number of numerator
V’s, which serves as an index for the free-propagator
expansion. The latter two assertions have been verified
by explicit calculation® with results in agreement with
the earlier calculations.®® The proof of the theorem
mentioned above depends on the properties of an
auxiliary expansion for fixed # called the % expansion
and is formal to the extent that the convergence of the
k expansion is not rigorously established.

Although the theorem described above can be
derived by real-variable methods, it is more natural
to use a complex-variable approach, regarding w= (0.Z)?
as a complex variable. We show formally that the
general term I,(w) of the free-propagator expansion
can be continued analytically in a circular neighborhood
of w=0 cut along the negative real axis, and that for
the derivation of the theorem it is sufficient to consider
Imy(I,), where Im, denotes the imaginary part along
the upper side of the cut. (The brackets denote a
bound state expectation value.)

8 A. J. Layzer, Bull. Am. Phys. Soc. 4, 280 (1959).

¢ Throughout this paper, functions analytic in w in a circular
neighborhood including w=0 will be referred to simply as
“‘analytic in w.”

18 Covariant calculations of the cw?Inw (and aw?) terms were
performed by N. M. Kroll and W. E. Lamb, Phys. Rev. 75, 388
(1949); J. B. French and V. F. Weisskopf, ibid. 75, 1240 (1949);
R. P. Feynman, ibid. 74, 1430 (1949); H. Fukuda, Y. Miyamoto,
?111;14 F. Tomonaga, Progr. Theoret. Phys, (Kyoto) 4, 47, 121

9).

1 The aw®? term was calculated by M. Baranger, H. A. Bethe,
and R. P. Feynman [Phys. Rev. 92, 482 (1953)], and by R.
Karplus, A. Klein, and J. Schwinger [1b:d. 86, 288 (1952)].

12A detailed calculation of the aw’? term using the free-
propagator expansion can be found in the author’s dissertation.
This term was calculated also by Fried and Yennie using their
special gauge (reference in footnote 1).

13 The fact that the aw'? result is given by the three lowest
terms of the free-propagator expansion could have been antic-
ipated from a corresponding result of N. Kroll and F. Pollock in
the similar hyperfine problem [Phys. Rev. 86, 876 (1952), footnote
277, It is not hard to see from the form of the magnetic potential
that the order a(aZ)Ep calculated by these authors for the
hyperfine case corresponds mathematically to the Lamb shift
order aw’’?, Here Ep is the Fermi energy.
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The treatment of mass and charge renormalization!
becomes simpler when one considers Im.(7,) rather
than 7, itself. Since the mass renormalization is
independent of w, Im,(I;) does not have to be mass-
renormalized. We show also that Im(Io) and Im.(I)
can be charge renormalized without introducing infrared
divergences into these terms.!s

1. FREE-PROPAGATOR EXPANSION

With a convenient normalization,'® the self-energy
diagram part of the self-energy is given by'?

(AE)=(3|AE|q) (1
d*k 1
AE=1i | —y—y,. (2)
r k2 p—k—otm

If the bound propagator is expanded in powers of
V', we obtain formally

AE= Y I, 3)

n={

a1
Y S
F

B p—k+m
rdk 1 1
1=1 f —Yy V. ~Yu 4)
r B p—ktm p—ktm
d*k 1 1 i
Io=1§ —, V. V- Yir
k2 p—ktm p—k+tm p—k+tm

and so forth.

The well-known expansion (3) will be called the
free-propagator expansion. Of course, the expansion
could be terminated at an arbitrary n by replacing
the last free propagator by a bound propagator.

On “rationalizing” the Dirac algebra for the free

" Somewhat inaccurately, we shall use the term ‘charge
renormalization” for renormalizations other than mass renormali-
zation. It is well known that renormalization in electrodynamics
can be effected in a covariant way by introducing counter terms
into the Lagrangian which can be ascribed to changes in the scale
of mass, charge and the field quantities. In this way, the separate
renormalizations of /o and I; can be correctly identified in the
present noncovariant representation. From a computational
point of view, the subtraction procedure for the renormalization
of Ip and I, is exactly analagous to the usual scattering prescrip-
tions for the self-energy and vertex diagrams, the only difference
being the occurrence of bound-state wave functions.

18 The renormalization introduced here is a purely formal
operation based on the usual Taylor’s expansions following the
analytic continuation.

16 A factor of —a/(4x)? is omitted.

17 Here we use the more accurate notation (AE) for the quantity
denoted by AE in the introduction. We shall distinguish between
the operators AE and I, and their bound-state expectation values
only when this is necessary to avoid confusion.
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propagators, we obtain
dak  k—p+m k—p+m
Lami [ S 2T @ TR
r k2 ORP—2pk+A  B—2pk+A
k""ﬁ-'!-m (n b— p+m
v fo ()
B—=2pk+A EB2—2pk+A
where
A=pmit= gt ©
E=mi—E2>0. )

For Iy and I, the % integrations are infinite at high
k. These infinities are removed by mass renormalization
Of Io and I1.H‘

The sequence of operators I, is formally the same as
in the similar expansion of the S matrix in the “free-
interaction picture” corresponding to lowest order
radiative corrections to (multiple) scattering in an
external field, except that in the scattering case &€ <0.1°
One can, therefore, combine denominators, shift the
origin of the % integration, and “rotate” the path of
the ko integration to the imaginary axis according to
the usual scattering prescriptions of Feynman.

For this purpose, we introduce a momentum represen-
tation, labeling the momentum coordinates from left to
right by po, p1, p2- - pn for I,. Here po is associated
with the left wave function and p. with the right
wave function. Then according to the results and
notation of F-Y, one obtains

[T #~2p AT
i=0
= f QY pr[F2—2p k4B, D (8)
[#* ﬁ k—2pik+A = (n-}—l)‘fdl/'n_1
i=0

X f dax (k=P +aDa(2) -+, (9)

0
where
n—1 1
den_lEnI H dymymm (10)
1= 0
and _
Dn(x)EAn—x(ﬁn)z' (11)

The “bar” operation for a given set of quantities
(21,02, - *,a,) is defined by

1=yoao+ (1—yo)a,
A= yn—»lévb—d"' (1 _yn—‘l)aw (12)

38 This apparently minor difference of the sign of € is actually
very important since it accounts for the fact that the bound-state
matrix elements I, are finite though the corresponding scattering
matrix elements 7, are divergent in the infrared. [For the origin
of the infrared divergence in the scattering case see, for example,
J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley Publishing Company, Inc., Reading, Mass-
achusetts, 1955), p. 394.] In effect, the binding energy of the
bound state plays the role of a ‘“photonmass’ as far as the
prevention of an infrared divergence is concerned.
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Note that (8) is an example of the general relation

| den~1(d»)“”+”= fI a L 13)

=0

From the definition (12), the bar operation is an
average in the usual sense with respect to a y-dependent
distribution; that is,

n—1
Gn= 2, Wiln, (14)
2=
with

wi>0 i=0,1, -, (n—1).

One consequence of this fact is that the bar of a
“constant” (n independent) quantity is the same
constant. This enables us to write the expression (11}
for D,(z) in three-dimensional notation as

D (%) =xm?+ A, — 2 (o) + e (16}
A=pi-é. 17

Another consequence  is the inequality for three-
dimensional operators p and p,

= (@) 20, (18)

since the quantity on the left is a dispersion. Equation
(18) implies, according to (16) and (7), that

D,.(x)>0. (19)

To complete the standard scattering treatment of 7,
we perform the shift of the origin of the % integration,

ku = ku+x15m (20)

and then rotate the %, integration from a Feynman
contour along the real axis to the imaginary axis. Note
that I, is invariant to the shift (20) for »>1. For I,,
as is well known, an extra term must be added after the
shift. In the remainder of this section and in the
following two sections, it is understood that exceptions
to the formulas and statements for general » may arise
as a result of “ultraviolet” divergences in the % integra-
tion for #=0 and 1. The explicit treatment of [, and I;
will be given in Sec. 4.
The expression for {po| /.| p.) is now

il b= () o+1) [k f dn favo,

Tk, p,p)
Xd3pod?ps- - - d¥pp oo (21
i P i

(k) =1 (40) 1L ica| V12OV (2,

N(p) =kt pitm. 2
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In three-dimensional notation for the p’s,

N(ps)=k—iv: (pi—xpn)+20,m—xym
—(m—E)ys(1—x), (23)
where .

Ay=3(1vs). (24)

According to (19) the denominator in the expression
(21) for (po|I.|pa) is positive definite.

Let us note that if f(x) is an operator function of the
position vector x, then we have the relation

F(g)=(p| f()]2"),
g=p—1' (26)

and F(g) is the appropriately normalized Fourier
transform of the “c number” f(x):

(25)
where

Flg)= (2 f ie-s(x)ds, @)

We shall be interested in the particular case that V,
has only a fourth component Vy=4V and furthermore
V is the Coulomb potential’®:

V(g)=—(ez/22%)/(1/g®).  (28)

On returning now to formula (21) and using an
obvious symbolic notation (the symbolic nature of the
notation is indicated by quotation marks), we can write
the expectation value of I, (which we shall also denote
by I.) in the abbreviated form

I,.=—(n+1)fd4kfdxx"de,,_1

“(5]7,V I_Io Npdvaloy”

=—az/r;

[k2+an (x):ln+2 (29)

Instead of the parameter x, it often proves convenient in
later work to employ the parameter o=1/x. With
this change of variables, the expression (29) for I, reads

In=—(n+1) f d*k f doo™t f d¥ .
1

“Olv V™ I1 N(pa)val )"
=0

X = . (30)
{2k +m2+oA—[(p)2+ 2]}

In the following, the existence of I, in the form
(29) or (30) will be assumed.

¥ It is worth noting that most of the analysis of this and the
following sections is valid also when the Coulomb potential is
generalized to a potential which, in momentum space, differs
from the Coulomb potential by a factor which is a bounded func-
tion of p/aZm. This is the case, for example, for a screened
Coulomb potential with a range of the order of the Bohr radius.
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We wish now to estimate the order in w= (aZ)? of
the various terms of I, and to extract and evaluate
certain lower orders in w.

This task will be simplified greatly by the introduc-
tion in the next section of the auxiliary ‘¢ expansion,”
which is a binomial expansion of the inverse denom-
inator of I, in powers of (p)*+ €. The existence of the
individual terms of this expansion and their lowest
orders will be established with a fair amount of rigor.
It will be shown in particular that the “zeroth” term of
the % expansion determines the lowest order of I,, and
this is of lowest order w for each % > 2. This is consistent
with the fact, noted by Fried and Yennie, that even
after combination of /o and 7, a “spurious’ contribution
of order w remains. Thus, as is well known, the free-
propagator expansion, in spite of the appearance of the
parameter (aZ) in the Coulomb potential, is not an
expansion in order of (aZ).

To complete the present section, we shall derive some
useful properties of I, that are independent of the %
expansion. In particular we shall employ a type of
“‘scaling” that will exhibit “externally” or ‘‘nominally”
the correct lowest order of w for I, for n>2 and we
shall show how the nominal order of a particular term of
I, is related to the numerator type, that is the number
of numerator k’s, p’s, «’s, etc. This will also provide an
opportunity for the introduction of a rather large
amount of special notation that will be used in all of
the following sections.

Definition and Labeling of ‘Elementary Terms”

Corresponding to the seven terms of the expression
(23) for N (p;), one can express I, as alinear combination
of 771 “elementary terms.” We shall (partially) label an
elementary term-by the seven indexes g, 7, s, {, #, v, w
denoting, respectively, the number of numerator factors
k, p, £P, Aym, xyam, (m— E)ys, (m— E)v.x. Since these
indexes are connected by the obvious relation

g+r+s+Hitutvtw=nt+1, (31)

one of them can be omitted and we choose this to be
the index t corresponding to Aym. Furthermore, terms
with nonzero » and w, which have “external’ factors of
(m— E) are fairly trivial as far as the general analysis
is concerned and the indexes v and w will therefore not
be explicitly indicated. Accordingly, we will represent
an elementary term of I, by the notation

I niqreus.
where the dots represent the indexes » and w.
and — — Components
The operator I, or one of its elementary terms T, is
a 16-component matrix in “spinor space.” It is often

convenient to consider separately the four constituent
2X2 matrices which connect the large and small
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component wave functions. This one can do by putting
the projection operators A, defined in (24) to the left
and right of I, or T'». Thus, we have

L=A LA AAMTA AT AHATA . (32)

In words, the first term of (32) is the “large-large”
part of I,, the second term is the “large-small” part
of I, and so on. To indicate this division for an elemen-
tary term Ia..grsu.., we add the subscript 4+, +-—,
—+, or ——. Thus,

I qroue i+

denotes the large-large part of the elementary term

I’n;qrsu-~ .

Selection Rules on the Indexes q, 7, s

There are two important restrictions on the values of
the indexes g, 7, s for nonvanishing elementary terms.
These restrictions arise from symmetry properties of
the operators 7, and will therefore be called “selection
rules.”

The first restriction follows from the symmetrical
nature of the % integration.

Selection rule 1. For nonvanishing 7, greu.., ¢=e€ven.
In fact, in addition to selection rule 1, there is the
stronger restriction that the number of “space” and
“time” parts of the k’s are separately even.

For the second selection rule, we assume that the
potential V has only a fourth component :

V=—7,V. (33)
Then, we have:

Selection rule 2. For nonvanishing 7 . 4rs..,

r+s=even for ++4, — —
r+s=odd for +— or ++.

There are two ways of proving this restriction. The
first method is independent of the wave functions and
the momentum space integration but depends on the
structure of the Dirac algebra and the restrictions
imposed on the % integration. One uses the following
properties of the projection operators Ay, A_:

AN =A A =0

Ai0= HA:F ’ Aie = GA:!:, (34)
where 6 and e are “odd” and “even” Dirac matrices,
respectively.? The result now follows immediately
from the observation that r-+s is the number of odd
matrices y enclosed by the projection operators aside
from ‘“‘paired” odd matrices due to the photon %, and
to the end factors of v,.

In the second method of proof, the expectation value
of I, is considered. One inverts all momenta po, p1,
---pn and takes note of the fact that the potential V'
and the denominator of I, are invariant to spatial

2 L. L, Foldy and S. A, Wouthysen, Phys, Rev. 78, 29 (1950).
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inversion, while the large and small component wave
functions have definite but opposite spatial parity.

“Scaling” Transformations

We turn now to the objective stated earlier of
constructing an appropriate scaling transformation
that will exhibit nominally the true order of w for 7,
for the case that V is the Coulomb potential. For this
purpose, we first scale coordinates and momenta
according to

x=> (azm)x
p= (azm)p;
that is, we transform to “Z” atomic units
(h=c=aZm=1).

The transformation (35) is to be thought of as a
canonical transformation to new variables x and p.
The wavekets [) will undergo a corresponding trans-
formation. If the new variables x and p defined by (35)
are temporarily called x’ and p’ and the new ket is

called |v,), then it is easy to show, by requiring the
invariance of the norm of |7), that we must have

(35)

(x| vy = (azm) K x= (azm) 2’| v)
(' |vs)= (ezm)Xp= (azm)p’| 1). (36)

After performing this canonical scaling transforma-
tion there is an external factor of w™ due to V", and the
denominator of 7, has the form

, B2 -m?m? (woh,—w[ (P)*+e.2]), 37)
where
A,=p*tel; e2=(m*—E)/mw.

In the following, we shall drop the subscripts s for
the scaled quantities A and €, since it will always be
clear whether the scaled or unscaled quantities are
meant.

The form of the denominator (37) suggests the two
additional transformations

k= wkm
(38)

which turn out indeed to yield the desired nominal
order of w for I, as a whole.

It is understood that the transformations (38) are to
be applied only when the % integration is convergent.
In the following we assume, in addition, that it is
permissible to interchange the % and ¢ integrations.

On performing the transformations (35) and (38)
on I, in the form (30), we obtain, after inverting the
order of the % and ¢ integrations,

In=— (n+1)mw f doa™+? f dk f dY wir

Vo I V@il 2"

c=wg,

X — ; (39)
{k2o*+1+od—w[ (p)*+e ]} "*?
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Vo=—1/r; (40)

N, (whp,) =wk——i'y-w§(p-—1—vz'))+21\+
a

()

Note that the dependence on m has been completely
removed from the “interior” of I, (if E is expressed in
units of m) and appears only as a linear external factor.

The external factor of w was arrived at by simply
counting #, — (n+3), and +4 powers of w due to V*,
doa™?, and d*k, respectively 2!

Approximations to the Large and Small
Scaled Wave Functions??

Let the symbols ¢ and x denote, respectively, the
large and small two-component spinors making up the
exact wave function v. Thus,

-0

The subscript s for ¢ and x will denote, as usual, the
corresponding scaled quantities. In the limit w= 0,
¥, approaches the Schrodinger wave function w,,
which is independent of w.

The corresponding approximation for the small
component is well known. One can write the Dirac
equation in the form

(42)

B 0 _ 1 .
Alo)= (;)——2-1;[ww-1>+V-|—(m-E)]lv)- 3)

By scaling both sides of this equation, we obtain
formally in the limijt w=> 0

(O)sirn()eoerl) o

This approximation for the small-component wave
function is a scaled form of the usual “Pauli approxima-
tion.” Here we shall use the phrase ‘‘generalized
Schriédinger approximation” to denote the approxima-

2 Note that if the photon had a finite mass, the transformations
(35) and (38) would not have been useful and the free-propagator
expanison would be an expansion in orders of aZ. Conversely, we
can say that the failure of the free propagator expansion to bean
expansion in orders of aZ is associated with the infrared diver-
gences of the corresponding scattering matrix elements. (See also
footnote 18.)

2 For the basic properties and explicit forms of the relativistic
Coulomb wave functions in position space see H. A. Bethe and
E. E. Salpeter, Quantum Mechanics of One and Two Electron
Systems (Academic Press Inc., New York, 1957), Chap. I. The
momentum space wave functions may be obtained from references
listed in that book or by taking the Fourier transforms with the
aid of tables given by A. Erdelyi, Tables of Integral Transforms,
Vol. 1., Bateman Manuscript Project (McGraw-Hill Book
Company, Inc., New York, 1954).
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tion to a matrix element in which ¥, = %, and x,=» w
- pu, for the large and small component wave functions,
respectively.

An exact expression for the small-component wave
function is obtained by introducing the wave function

G E:::rdl g t:
X

In the limit w=>0; ¢,=> u,. For S states, ¢ like ¢
is spherically symmetric and has only one component
for definite spin direction of u,.

For § states, ¥.(p) and ¢,(p) have the general form

¥s(p)=us(P)Lf1(p,w)+wpfa(pw) ]
¢.(p)=us(p)f2 ()], (46)

where the functions f(p,w) are analytic functions of w
and continuous functions of p. Furthermore, the
functions f(p,w) are finite at =0 and behave at high
$ so that fu remains integrable over d3p.

The representation (45) makes it possible to treat the
large-small and small-small parts of I, in the same
formal manner as the large-large part. For this purpose,
we use (34) to write

Ao-pp=a-pA;
a'PDA—=A+a'?07

where po and p. are the momentum coordinates of the
wave functions. After doing this, the appearance of the
+— and — — cases is like the 4 case, except that
effectively the index 7 is raised by 1 or 2 for +— and
~— —, respectively.

In the following calculations it is sometimes necessary
to go beyond the generalized Schridinger approxima-
tion. Since the wave functions ¢, and ¢, are analytic
functions of w, they can be expanded in powers of w.
Only the first correction to the Schrodinger wave
functions will be needed in the calculations. We
introduce the notation %, and ¢,” for these ‘“Dirac
corrections” to u, and ¢., respectively. Thus,

Vot wu,’ and ¢ utwes

(45)

(47)

(48)

Form and Nominal Order of Elementary
Term of I,

We conclude this section by writing an expression
for the nominal order of an elementary term labeled by
g, D, S, and #(v=w=0) in the generalized Schrodinger
approximation. Here D is the degree of the numerator
polynomial in the p’s and $:

D=r+s ++
=r+s+1 +-—
=r+s+2 ~-.

The necessary modifications for Dirac correction
terms and nonvanishing » and w will be fairly obvious.

and —- (49)
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From (39) and (41) one sees that the nominal order
of our elementary term is w” with

v=D/2+4-q+s+u-t1. (50)

According to selection rule 2, D is an even number and
therefore » is always mtegral

We shall show in the next section that according to
the £ expansion the nominal order » is the true order
up to an order of about w72,

2. k-EXPANSION

The % expansion mentioned briefly in the last section
is obtained by expanding I, in powers of (§)*+€
X[(P*+m?) in four-dimensional notation] according
to the binomial expansion

1 v gptk—1Y\ b
-=("7) Q)
(a—b)? k=0 k amth
with p=n+2, a=o%*+m?+oA and b= (p)*+ .
Correspondingly,
=S 14 (52
k=0
where, after scaling, from (39)
Ip=(— )( )(n+1)m'w’°+1
X f doo™t? f d*k f dY 1
RARAT ) EACUS (ol SR
X (53)

(k202+ 1 +a‘Z) n+k+2

From the inequalities (18) and (7) the expansion
(51) is always convergent, but this is not necessarily
true of the corresponding integrated expansion (52).
We shall be able to prove the existence of each I,*, but
the convergence of the % expansion of I, will be assumed.
The trouble here arises at the “point” o=1 (before
scaling) and some or all of the $’s infinite. The assump-
tion of convergence of the 2 expansion is clearly closely
related to the previous assumption of the existence of
I,. For certain elementary terms these assumptions
are in fact equivalent. This is the case, for example,
when D=0 [see (49)]. For, using a momentum represen-
tation and dominating the Schrédinger wave functions
by the 1—S wave functions, one sees from (28) that
in this case the integrand is always of the same sign.

The % expansion has a number of useful properties
which will become apparent in the following work.
Here we note only that the % expansion simplifies the
appearance of the parameter w. Except for the analytic,
and therefore formally expandable, dependence of the
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scaled wave functions on w and the rather trivial and
expandable dependence on w of the scaled € of the
denominator A, w appears in the “interior” of I,.* only
in the lower limit of the final s integration. One con-
sequence of this is that whenever the lower limit can
be replaced by 0 without introducing a divergence in
the final s integration, the nominal order » of a term
of I.* will be the true order. We shall show in this
section that this is the case for v less than (#+3)/2
(for n2> 3). Thus, the “vertical” % expansion, unlike the
“horizontal” free propagator expansion is initially an
expansion in orders of w.

Formal Sum of Lowest Order Terms

If we assume the validity of the results mentioned in
the last paragraph, then it follows that the “spurious”
order w contributions for #»>2 arise only for the k=0
term 7,0 and from the elementary term with g=r=s=u
=g=w=0, that is, with N(P;) in (23) replaced by
2A,m.

It is now easy to show that these =0 terms can be
summed formally from #=2 to « by making use of
the identity

1 1 1 1
A+B 4 4 A A

( B) (— B)-—+ - (54)

vielding a result which in lowest order indeed cancels
the known contribution of order w from Io+I, as
previously computed by F-Y. The formal sum results in
the appearance of the bound nonrelativistic electron’s
Green’s function acting on the Schrodinger wave
function, which enables the calculation to be completed
in an elementary way.

To carry through the algebraic summation one
employs identity (13) to eliminate the y integrations
and return to a ‘“‘separable” or product representation.
Since the denominator in (53), for £=0, is raised to
the power #-2 rather than the power n-+1 required by
(13), one first performs a partial differentiation with
respect to k2. This also removes the numerical factor of
(n+1) in (53) and one finds now that identity (54)
can be employed immediately with

A=c*%*+14-0A; B=2V,.

It should be emphasized that for the calculation of
the type of terms of interest (nonanalytic in w) the
above formal sum will not be needed and will not be
employed. For these terms the order w contributions
(as well as those of order »?) can be entirely “by-passed”
as will be made clear in Sec. 3.

Boundedness Properties in Momentum Space
of Certain Iterated Operators

We now turn to the question of the existence and
lowest order of the I,,* and the corresponding elementary
terms In;grs... . By using dominating arguments in
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p space we shall show in the following subsection that
the problem can be reduced essentially to the bounded-
ness properties in a momentum representation of
certain iterated operators characteristic of =0 terms.
The fact that these operators are iterated is essential,
since it permits one to employ inductive methods of
proof. For the sake of mathematical clarity, the defini-
tion and the derivation of the required properties of
these operators will be given first, in the present
subsection.

We introduce first the symmetric operators K,
defined by?

@ 1
Ralp )= 0e| Pap Vo 1+?2- 2
14-p* 9
K, is defined by iteration according to
Ry=Ku(=Vo) 1+ (56)

K1= Vo(14 %)V,

Since we shall dominate the wave functions by S-state
wave functions, it will be sufficient to consider only the
angular average of K,(p,p") over the angles of p, p'.
This two-dimensional function will be denoted by
Ka(p,0").

After the required integration over the angles of p, '
is performed, K.(p,p") is given inductively from (56)
and (28) by the relations

Ka(p,p)
1 2¢ p* x+p
= —f Kn1(p%) ln# 5 (57)
(2m)® p'Jo (142 |x=—p
Kl(?;?/)
1 ® g +p'
e [ i PN AL A O
@m)2pp’ Jo 14 |x—pl  |x—7p'

The properties of the K,.(p,p") that we shall need
in later work are listed in the following theorem. Here
and in the following, 5(p,p’) or b(p) denote bounded
functions of their arguments.

Theorem 1. K.(p,p’) has the following properties:

1. Ko (p,0")=Ka(p',p).
2. Let Ra(p,0")=pK.(p,0")p'.

Then, Rﬂ(P;P,)’_‘Rﬂ(l/p: I/P,)

% The quantities K, are essentially the iterated kernels of the
integral equation satisfied by the nonrelativistic bound electron’s
Green’s function G= (p2/2+V+8)! with 28=1:G=G,+G,VG,
where Go=(*/2+8)"%.

where
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1

(2n%) pp'

X (tan—1p0(p'— p)+tan~'p'0 (p—p')

—2/7 tan~1p tan—lj}']

3 Kl(p;p’)z

6(x)=1, %, 0 for x>,
4. K,(p,p") has the behavior

(a) For p<p’<1,
Ky (p,2')=b(p,p")+02(p) Inp,

4
(27%)?
(b) For p(1; p')1,
Ka(p,0)=bs(p, P')—+

=, or <0, respectively.

ba(p)=— (tan™'p)/p;

bi(p,p )
p 4]
The behavior in other regions can be determined from
properties 1 and 2.
5. For n2 3, K.(p,p") is a bounded function of p, p'.

Moreover, for the case p(1;p)1, K.(p,p") has the
behavior

Ka(p:0")=b(p:")/ 9"

The behavior in other regions can be found from
properties 1 and 2.

6. K.(p,p") is a continuous function of p, p’ for
n23. For n<3, K.(p,p') is continuous except for
p=p"=0.

Let us note that K,(p,p’) diverges linearly if both p
and p’ approach zero together but does not diverge if
one of them is held fixed. A similar statement holds
for the logarithmic divergence of K.(p,p’). Thus,
pK . (p,p) and pK.(p,p")p’ are bounded and continuous
functions for n> 1.

The proof of theorem 1 is not difficult and will be
only briefly described. Statement 1 of theorem 1
follows from the similar property of K,. Statement 2
follows by induction from (57) and (58) if one notes
that dx/(14+2%) and In(x+p)/(x—p) are separately
invariant to the transformation x=>1/x, p=>1/p.
After establishing 3 and 4, the relations 5 and 6 are
easily proved by induction using the representation
1))

The evaluation of K,(p,p’) given in statement 3 is
easily obtained from (58) using contour integration.
Since each of the two logarithmic factors is an odd
function of x, the » integration can be extended to — .
Let us assume that the arguments of the four component
logarithmic factors in the complex x plane run from
—a to . Then, our procedure is to draw branch cuts
downwards through the four points x==p, =+p’,
close the contour from above, and pick up the residue at
x= -1, The result is automatically real, but an unwanted
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contribution arising from the product of the imaginary
parts of the logarithms must be subtracted off.

In addition to the quantities K.(p,p’) studied above,
we will be interested in the more general quantities
K2 (p,p") defined by

143

1+p2

K ()= (~0p Ve — Vo

1___{—__;; V 0?Vn+l

=0 to #.

p) (59)

v is an abbreviation for the set of numbers (vo,v1, - - < ¥x).
The average indicated is an angular average over the
angles of p and p'. The notation is really somewhat
symbolic since it is understood that the intermediate
integrations are to be carried out in p space and the
numerator p’s refer to the absolute values of the vector
P’s.

The quantities K, will arise in the following sub-
section in connection with dominating arguments in
¢ space for the general elementary term, which contains
a numerator polynomial in the ’s. To carry through
these dominating arguments, it turns out to be sufficient
to study the single iterated quantity L.(p,p") defined
below, essentially the “worst” case of the K.(p,§"):

v;=0,1

1+p (1) 1+37
La(p#)= (== J
"N e
(n+1) ‘H’

p) (60)

L.(p,p") is defined by iteration according to the relations
Ly=Lp (1) (= Vo) (1+)

Li= 14V (14p)/(1+p) Ve(1+p)  (61)
or
2r (1+49p")
Ln(?; :T f Ln~l( ’x) x
T (1+P)(1+P) ® 1t
Li(p,p) = d
O~ f e
Xln|— ialks In|~ 7 . (63)
a—pl  |x—p

The properties of the L.(p,p") which we shall need
are stated in the following theorem.
Theorem 2. L,(p,p’) has the following properties:

1. Ln(?,?’)=Ln(P,,P)
2. Lu(p,p")=b(p,#" )+ K:(p,p")
+e[Inp'8(p'~ p)0(1—p")
+inp(p—p)6(1—p)].
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3. L2(?7P,)=b(?}P’)—{—b(P?PI)KZ(P)P’)'
4. For n>3, L.(p,#') is a bounded function of p
and p’.
5. For n=3, L.(p,p') is a continuous function of
p, . For n<3L.(p,p’) is continuous except at
the point p=2'=0.

* The proofs are straightforward and similar to those
of theorem 1. It is convenient to prove inductively the
statement that L.(p,p")=b(p,p")+Kn(p,p)b(p,p") for
n2>2 and then use the result 5 of theorem 1.

Existence and Lowest Order of Elementary
Terms of I’

We are now ready to derive the result of main
interest in the present section which is stated below.

Theorem 3. Let I,” denote an elementary term of
the %k expansion with nominal order ». Then I,” exists
for > 2, and for n>3:

(a) »<(n+3)/2 : I,=cw+higher order.
(b) »> (n+3)/2 : I,>=cw™t3 24 higher order

(c) If n is odd and v= (n+3)/2 : I/=cw"*+? Inw
-+higher order.

For n=3:

(a) is still true but (b) and (c) are replaced by
(b) I7>*=cw? Inw-higher order.
(¢) I=*=cw® In*w-higher order.

For n=2:

(a) v=1 Iy='=cw-+thigher order.
(b) »=2 Iy=?=cw® Inw-+higher order.
(¢) »>2 Iy=cuw*+higher order.

Proof of theorem 3. With the aid of dominating
arguments in p space and appropriate transformations
of variables, we shall reduce the problem to the bound-
edness properties of the iterated operators K, and L,
studied in the previous subsection. Essential to the
dominating arguments is the fact that {(p| — V| p')>0.

In order to eliminate trivial cases, we shall consider
only elementary terms with v=w=0 and with the ¢
of the numerator [(#)2+¢]* and denominator A
replaced by es?, twice the Schridinger binding energy.
Furthermore, We shall consider only the S-state case.
Because of the improved behavior of the non-S state
wave functions at high p, the dominating arguments
given for the S-state case will apply even more strongly
to the S-state case.

Let us first consider the large-large Schrodinger
approximation. After carrying out the Dirac algebra
and the angular part of the k integration, the relevant
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elementary terms are of the form

I=TI,.qrse*=mw’ f dggn—s—ut? f dN\\¥et? f aY,,
w 0

11

X <u3

where A=£? and Q is a scalar polynomial in the vectors
b D.

We shall dominate I, by dominating the momentum
space wave functions by the 1—S wave function and
replacing the vectors p and % in Q by their absolute
values. Thus, we use

”

u3> (64)

(65)

(=V0)"Qurs(8,p)L (D) + €2
[Ao?14oArHt

v="k+4q+(r+3s)/2+u+1,

[Onirs (P2 < I=I0 pp, (66)
where
v,=0,1, Zv;=r. (67)

It is now convenient to divide the range of the o
integration into the intervals (w,1) and (1, ). Let us
define I,.(s) and I.(e,8) by the relation

8
1e8)= [ dol (@) (68)
Then, we divide I.” into two terms according to
nv=Iny(w;1)+Iﬂv(17°°)~ (69)

A. I.(w,1)

The numerator dependence on $ and € may be
removed by using the inequalities (18) and (7). This
changes the power of the denominator from n-+2-%
to n+2—s/2 and changes the power of ¢ in the numera-
tor from n—s—u+2 to n—k—3s/2—u+2. Next, we
perform the transformation

A=A (70)

To make use of the previously studied iterated
operators, it is necessary to go over to a separable
representation with the aid of the identity (13). For
this purpose we must change the power of the denom-
inator from #+42—s/2 to #--1. Since the limits of the
A integration run from O to o, this is easily accom-
plished by adjusting the power of A in the numerator,
Having gone over to a separable representation, we
use the domination

M 14cA>SA+H1+o(pD) a0y (71)
and perform the transformations
pi= [()‘+ 1)/"]*?% 1= 1;2!' - ';("’— 1) (72)
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We obtain finally the inequality

1 0
[ I (w,1)| <constmw” f dog(ntDi2—r f d\
w 0

Aat)i2
- 3
X[>\+1]<"+5-r>/zf Poubpiliel o
1
X K. v (p,p ) —palus), (13
R el 9
where
p=Lo/A+1)Tpo; p'=[o/A+DTpa. (714
From the definitions (59) and (60) we see that

Kor"<Laa(p,p). (75)

The results of theorem 3 now follow easily from the
known boundedness properties of the L.(p,p") given
in theorem 2.

B. I.(1,»)

I,(1,%) is formally proportional to «’. We shall show
that I,(1,) exists and therefore the nominal order is
in fact the true order.

This time, the ¢ in the denominator A of (64) is in
general essential to the convergence of the o integration
at high ¢ and cannot be removed. Instead of the
domination (71), we use therefore the domination

A+1+0cA>N+0A. (76)

After an elementary analysis similar to the one used
in the preceding case, we obtain the inequality

» Aat)/2
[T.>(1,)] <constmw“f aN————
o [AF1]ersmr

% f Bpodpuln,| po)

1
XK () ol (77)

1+ 1+

p=01/ (D Tpo; p'=0/ D Tpa. (78)

From the properties of the L, 1(p,p’) it is easy to
see that the right-hand side of (77) exists for #2> 2.

This completes the discussion of the proof of theorem
3 for the large-large Schrodinger case. The analyses of
the +-+ and — — Schrodinger cases and Dirac correc-
tions are straightforward. For the Dirac corrections one
uses the general form (46).

with

3. A THEOREM ON THE NONANALYTIC
PART OF I,

The main result of the present section is the following
theorem which states that for the particular class of
terms nonanalytic in w, the free-propagator expansion
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is an expansion in orders of w. Thus, the free-propagator
expansion is especially suitable for the calculation of
this class of terms.

Theorem 4. (The “main result.”) Assuming the
validity of the % expansion, the nth term I, of the
free-propagator expansion has the following property.
For n> 3, the lowest order of terms in 7, nonanalytic in
w is w(™¥/2 for n even and w2 Inw for # odd; for
n=23, it is »® In%w.

Note that this theorem coincides with theorem 3
for terms of the % expansion of nominal order

v2 (n+3)/2.

According to the theorem, the previously calculated
Lamb shift orders w?Inw and w? should be calculated
correctly by considering only #=0, 1, and 2. This
result will be verified in the calculations of the following
sections and is In agreement with the earlier results of
F-Y and Kroll and Pollock mentioned in the introduc-
tion. The orders %® In*»w and w?® Inw which we wish to
calculate arise according to the theorem only for
n=0, 1, 2, and 3.

Although the proof of the above theorem can be
obtained by a refinement of the proof of theorem 3,
the formulation and the result of the theorem become
more natural, as will be seen, when w is regarded as a
complex variable. We shall therefore first derive the
theorem using a complex variable approach. Later on in
this section we shall briefly show how the same results
can be obtained when w is considered to be a real
variable.

Preliminary Theorems

When one considers the Lamb shift orders w?Inw
and w?! for which only a few terms of the free-propagator
expansion are needed and seeks a simple criterion to
distinguish them from orders such as w? for which the
infinite expansion is necessary, the nonsingle-valued
nature of the former terms as functions of the complex
variable w suggests itself naturally. Thus, if one requires
the functions %? Inw and w?* to be, like I, real on the
positive real axis, then these functions are analytic in
any circular neighborhood of w=0 cut along the
negative real axis but have along the cut a finite
imaginary discontinuity. (We shall show later that I,
can be analytically continued in this cut region.) The
values of the discontinuity A of “upper”’ minus “lower”
values are determined by the easily derived relations

(79)

Obviously, A4 (w)=0 where 4 (w) is any single-valued
function and in particular an analytic function of w.
Let us now define the “original” corresponding to a
given discontinuity to be any function which has the
specified discontinuity. Then, we are interested in the
extent to which the discontinuity determines the
original. It turns out that under the conditions of

Alnw=2ir, Awi=2i|w|}
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interest the original is determined to within an analytic
function of w. Moreover, the discontinuity, as in the
examples (79), is always a purely imaginary quantity
and equal to twice the imaginary part of the original
on the upper side of the cut.

These results are contained in the elementary
theorems 5-7 and given below. Theorem 5 is readily
seen to follow from Morera’s theorem?; theorem 6 is
an immediate consequence of the so-called reflection
principle?’; theorem 7 is a corollary of theorems S and 6
since the only isolated singularities are poles and
essential singularities and a function having these
singularities can not be finite in a neighborhood of w=0.

Theorem 5. Let f(w) and g(w) be functions of the
complex variable w. Let G be the annular region in the
w plane formed by a circle of radius W .26 and a circle
of radius ¢ where e is arbitrarily small but nonzero.
Let G’ denote the same region cut along the negative
real axis. Let k(w)= f(w)—g(w). We suppose that f
and g satisfy the following conditions:

(1) Both functions are analytic in G';

(2) values of the functions along the cut called upper
and lower values may be assigned such that the
functions are continuous in closed upper and lower
neighborhoods of the cut, respectively. The associated
values of f and g are denoted by f*(w.) and g*(w.) for
upper values of f(w,), §(w.) for lower values, where w,
is a value of w along the cut.

(3) At (w.) =k (w.)=h*(w,) for all values of w. Then
h(w) defined along the cut as A*(w.) is analytic in G and
therefore, since e is arbitrarily small, 2(w) has at most
an isolated singularity at w=0.

Theorem 6. Let f(w) be a function satisfying the
conditions (1) and (2) of theorem 5 and also real
along the positive real » axis. Then the discontinuity
SH(we)— f~(w.) along the cut is twice the imaginary
part of ft(w,).

Theorem 7. Let f(w) be a function satisfying the
conditions (1) and (2) of theorem 5. Let Im, f(w) be
defined as the imaginary part of f(w) along the upper
side of the cut. Then, if f(w) is real along the positive
real axis and finite in a neighborhood of w=0, a knowl-
edge of Im,f(w) is sufficient to determine f(w) to
within an analytic function of w.

In view of theorem 7, the “main result” admits of
the following simpler formulation.

Theorem 8. Assuming the validity of the % expansion,
the lowest order of Im,J, is w("¥/2 for >3 and
%? Inw for n=3,.

# K. Knopf, Theory of Functions (Dover Publications, New
York, 1945), p. 66.

2 E, C. Titchmarsh, The Theory of Functions (Oxford University
Press, New York, 1958), p. 155.

26 In our problem of the analytic continuation of I, it seems
necessary to take W, <1 for the 1— state since, for example, the
formal expression for the Dirac energy E= (1—w)? has a branch
point at w=+-1, However, a rigorous derivation of the maximum
value of W, for the stated analyticity properties is not attempted.
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Fi1G. 2. Rotated path of integration for example 2.

Since I, is in the form of a rather complicated
multiple integral involving the parameter w, it is
worthwhile, before proceeding to the derivation of
theorem 8, to give a few illustrative examples of the
determination of Im,jf(w) when f(w) involves a
one-dimensional integral containing the parameter w.?
The second example is similar to the situation which
will arise for 7, in the derivation of theorem 8. The first
example is introduced because of its simplicity and
because it is similar to the treatment that will actually
be employed in the detailed analysis of I, in Sec. 4.

Example 1.

U dx
fw)= f —4(®) 0Sw<t.

(80)

g(x) is a real continuous function of x. Note that f(w)
is real for real w and is analytic in the w plane cut
along the negative real w axis. Furthermore, the analytic
continuation in this region can be effected by simply
letting the parameter w assume complex values.

Since

Im,1/ (x+w)= —md(x—w), (71)
we have immediately
Im, f(w)=—ng(w). (82)

Example 2.
f(w)=g(w)f dss* exp(—st) O0<|w|<1. (83)

Here, p is a real number and g(w) is an analytic function
of w, real along the positive real axis. Note that since
it is analytic g(w) is also real on the cut along the
negative real axis.

To continue the integral, the lower limit of the path
of integration will be “rotated,” as shown in Fig. 2,
from the point C on the positive real axis to the point
A on the negative real axis along the semicircular arc
CBA of radius w».

271In these examples and in the following work, Im, is to be
regarded as an operation in which the argument of the function
f(w) acted upon is rotated in a circular arc of radius w from a
point on the positive real axis to a point on the (upper) negative

real axis. The imaginary part is extracted in the limit § = =,
where 8 is the angle of rotation.
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The imaginary contribution arises only along the
semicircular path 4BC. Thus,

Im,f(w)=g(—w) Im, | s¢exp(—shds (84)
or, letting e
s=we®, (85)
Im, f(w)= —g(—w)w+ Imyih(w)
= —g(—w)w* ' Rh(w) (86)

h(w)EfrdG exp{i(u+1)0—wie?/2y,  (87)

Analytic Continuation of I, and Derivation
of Theorem 8

We begin with the expression (39) for I,. We observe
that I, is real for positive w. v,(w) is an analytic
function of w in either a position or momentum represen-
tation. (More accurately, ¥, and ¢, are analytic
functions of w.) To analytically continue I, we would
like to transform the path of the o integration as in
example 2 of the preceding subsection to the path
ABC of Fig. 2 while replacing w by —w in the integrand.
The expression as it stands is unsuitable for a formal
analytic continuation since the denominator may
become zero when ¢ is replaced by —w. To avoid these
poles of the integrand we perform the transformation

k=% (88)
as in (70) and also the canonical scaling transformation

p=o%

x=> oty (89)

v (@) = [v(ow)).

The new wave functions v(s,w) in position space
reduce in the Schrédinger approximation to the
wave-functions u(s) which for the 1—S state are
given by

u(s) = constat exp(—otr). (90)

The denominator is now positive definite even when
o= —w (and w= —w). The integral over the circular
path ABC of Fig. 2 involves a “rotation” of the wave
functions v(s,w) through complex values of o but be-
cause of the negative real part of the exponent in %(c),
formula (91), the integrals will remain convergent.

Because of “‘selection rules” 1 and 2 of Sec. 1 and
the analytic nature of »(s,w) as a function of w, the
integrand remains real after the replacement w= —w.
Thus, I, is real along the path C to « as in example 2
of the previous subsection and as in that example, we
can again restrict the path of integration to the
circular path 4 BC. On introducing again the parameter
6 by the relation

oc=we", 91)
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we obtain finally, omitting an unimportant numerical factor,

Im+I,.=Im+imw"/2f d0exp[i0(n/2—1)]fd4kfdl/',._1
0

L3

n

YuVo IT N.(Ge#2p,)y,

=0

X (v* (e, —w)

[E+H 1+t (0)+u(ed+1)e ]

v(we®, —w)). ‘ (92)

It is understood that the argument of ¢? is now —w. Finally, in accordance with (72), we perform the

transformations
po=>wipy
D= Wip,. (93)
Then
(plo(o,w) = wip|v(e®w)).
We obtain

Im, I ,=Im dmw /2 f do exp[i6(n/2—1)] f @pod*pu(T*(e?, w) | po)M (wipo, whpa)(pn|2(e?, w)),  (94)
0

where

'YMVD" II N, (ie_wlzpi)')’y

n

”
=0

M (po,pn)= f d4kf dyn_l“<po

The formal limit of this expression as w= 0 is

Im, I, = amw™t3/24,2(0) (96)

a=const Im,4 f 7rdtS’ expli0(n+1)/21M (0,0)>. 97)

0

We have noted that the rotated position space wave
functions e(e®) have the same value at the origin as
the scaled Schrodinger wave functions #, except for a
factor of et®,

If one admits the validity of the 2 expansion, in this
case an expansion of M (0,0) in powers of e #(p)?
then for >3, the existence of M (0,0) is assured by
the results of Sec. 2. Furthermore, for the individual
terms of the & expansion, M (0,0) is of the form

conste~ ¢,

where v is the nominal order of the original elementary
term of the & expansion as evaluated in (65).

The constant “a” in (97) is thus always finite. If #
is odd and the % expansion is used, then we see that the
coefficient ““@”” vanishes unless the condition

v=(n+3)/2
is satisfied.

For n=3, it is easy to see that the logarithmic
singularity at small g, p., due to the behavior of
Kq(p,p’) or Ly(p,p) at small p, p’, leads to the appear-
ance of an ‘“‘extra” factor of Inw in the lowest order of
Im7,.

This completes the derivation of theorem 8. We have
also shown the following stronger results.

Theorem 9. The lowest order terms w72, g(n43)/2

[E+ (Pt e @)+ et ]

p,,> . 95)

Xlnw, and (for #=3) »?In?w mentioned in the main
results are proportional to #,2(0), the square of the
scaled Schrodinger wave-function at the origin in
position space. Furthermore, if # is odd, then for the
individual terms of the £ expansion, the coefficients of
w92 Inw or w?In’w vanish unless the normal order
satisfies the condition

v=(n+3)/2.

The proof given of theorem 8 is formal and non-
rigorous at a number of points, particularly in the
treatment of the passage to the limit from Dirac to
Schrodinger wave functions.

A “rigorization” of the derivation of the main result
is probably easiest to achieve using the real-variable
methods described briefly in the following subsection.

Real-Variable Methods. Differentiation Device

In distinction to the complex variable method just
discussed in which a closed form could be preserved
until the last step, real-variable methods have the
disadvantage that they depend on performing the %
expansion at an early stage.

As mentioned earlier, the “main result” can be
derived by a refinement of the proof of theorem 3.
We wish here to discuss a second real-variable method
which is similar to the preceding complex-variable
approach in that it also discards information about the
analytic part of I, and restricts the parameter o to
values of absolute magnitude w. This method will be
called the “differentiation device.”

Let us consider the expression for a particular
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elementary term. After performing the transformation
(70) and carrying out the A integration, this is of the
form, corresponding to (64),

2= mw’ f dogm f aY .

“ (= Vo)"Qu*(a?p,0*p)
X <vs(w) ~
(1+UA)n+k—q/2

where Q,X(p,p) is a scalar polynomial in the vectors
pi, P for i=0, 1, ---) n. One can now expand the
‘analytic dependence of v,(w) on w leaving an “‘internal”
dependence on w only in the lower limit of the o
integration where it can be removed by differentiation.

For definiteness, let us consider the generalized
Schrédinger approximation. Then, we form the differen-
tial equation

Iy
) — _wn—l—vfdyn_l
muw*

“ < (= V0)"Qu* (whp,wp)
X uS

(1+wd)r+e—a/?
This is of the general form

v8<w>>”, (98)

d
dw

u5> , (99)

(d/dw)[ f(w)/wJ= constw*+higher order (100)

which has as solution
for p£—1  f(w)=crw'+eapr 0>+ (101)
for p=—1 f(w)=csw’ lnw+0>w” Inw, (102)

where the symbol 0> means “higher order than.”

In the case of our differential equation (99) and #>3
one verifies by familiar methods that u= (n+1—v»)/2
and therefore, that, according to (101) and (102), the
lowest order nonanalytic terms are proportional to
w812 and w92 Inw for » even or odd, respectively.

Additional Remarks

It is of interest to point out a few results of a more
detailed nature than those obtained so far.

The derivation of theorem 8 shows clearly that the
lowest order nonanalytic terms are given by the
generalized Schrédinger approximation. In fact, a closer
analysis shows that only the 4+ part enters in lowest
order. This is due to the fact that pL.(p,p") and
pL.(p,p")p’ approach zero in the limit p=p'=0for n>2,
where L, is defined in Sec. 2. More generally and for the
same reason, the coefficient of the lowest order w(=+3/2
or w2 Inw terms vanish whenever the powers v, v,
of po, p» in the numerator are greater than zero.

Finally, we remark that the anomalous position of
n=2 and 3 relative to the main result, namely, the
appearance of the orders %? Inw and %® In?w instead of
w! and w® Inw for n=2 and 3, respectively, occurs only
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for the case #=r=s5=0 and +-+. This follows in a
straightforward way from the boundedness properties
of the quantities Ky or Ky given in the Appendix.

4. TREATMENT OF I, AND I

In the preceding sections we examined ‘‘order”
properties of the general term I, of the free-propagator
expansion. We established in particular that the new
orders #® Inw and %® lnw which we wish to calculate
arise only for #<3. In this section and the following
paper we shall study these lowest terms of the free-
propagator expansion in more detail. In the actual
calculations we shall use the usual % expansion and the
“differentiation device” for I, with #>0. On the other
hand, for I, we shall use the “rotation trick’ to obtain
a closed expression for the terms of interest. That is,
we shall form Im(7o) and take the original to the
desired order in w. This gives an independent and
especially concise treatment of the non-analytic part
of I 0.

We turn first to a consideration of the terms Io and I,
for which ‘‘ultraviolet” divergences associated with
mass and charge renormalization'* have made inapplic-
able the general analysis of the first three sections.

It is a well-known consequence of gauge invariance
that charge renormalization is unnecessary in this
problem and that the charge renormalization subtrac-
tions cancel between Iy and I,.2% If charge renormal-
ization is performed, one introduces infrared divergences
into [, and 7, separately which cancel against each
other. If charge renormalization is not performed then
these infrared divergences are avoided but one obtains
“spurious” lowest order terms of order wlnw which
again cancel between I and I, (see F-Y).

As we have noted in the introduction, the complica-
tions due to mass and charge renormalization are
removed when one considers only the nonanalytic
part of I,.

Formation of Im I,

We shall form Im 7, directly without passing through
the step of the mass renormalization of I,. Let us note
first that the nonanalytic part of I, is invariant to the
customary shift in the origin of the % integration,
though this is not true of I, itself due to the presence of
a linearly divergent k& integration.? The reason for
this is that the “extra” term occasioned by the shift is
proportional to (#|p|v)=(5|V|v)—m, which is an
analytic function of w. Thus, we have from (5), with

28 An explicit proof is given by F-Y. From the point of view of
the general renormalization theory (compare footnote 14), the
cancellation is a consequence of the identity of the renormalization
constants usually labeled Z; and Z; (Ward’s identity).

% We refer to the standard formal treatment of the linear
divergence given by J. M. Jauch and F. Rohrlich (reference in
footnote 18, Appendix).



n=0,
Io(nonanalytic)
7:&[’”‘*’ (- x)lﬂ?’»
re— d4 k
where
D(xy=xm2+(1~x)A. {104)

We have discarded in standard fashion the term linear
in k on the grounds of symmetrical integration.

Let us now perform the usual scaling transformation
(35) for the coordinates and momenta. Since Im,J, is
finite, we can interchange the order of the x and &
integrations, Then we are interested in the evaluation
of the quantity

Flw)= f . 105
(w)=Im, D\+a(w)]2 (105)

with A=%? and a(w)=a[x+ (1—x)wA7]. On using (81)
and partial differentiation, we see that -

F(w)=n8{—a(—w)}, (106)
where in our case 8{ —a{—w)} =8(wd/(1-+wA)—x). In
this way we obtain the following expression for ImJy:

WA 1+wA
Im+1-0 Ws(”k("’“’) tf dx{ym— (1—2)pav,}

><zs3<--w>>, (107)

where
po=imwip; foo= E(—w), (108)
The argument —~w of A in the upper limit of the x
integration has been omitted. We have used the fact
that
0<wA(—w)/[1+wA(~w)]<]1. (109)
Performing the trivial x integration and carrying
out the Dirac algebra, we obtain
zrs{-w)>
wA f

. 1 w&]
1+wal 214wal

wA [1

1
ImIQmZmﬁ(ﬁ,(mw) +- at }
1+wAl 2 14wA

- 27r3<!7’s (—w) i

X (pstm) %s(""?ﬁ})- (110}

On separating off the lowest order term by the
expansion (1+4wA)t=1—wA(1+wA)* and using the
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Dirac equation for the second line of (110}, we obtain

Imy Zo=2mruw(v,(—w) | v:l | v, (—w))

- A vs(ﬂv})

‘(1w ’ ”{_w}>

-—2mf.vr3w2<vs(-w) e

-§-m*.*r%?<va{ -}y

+ Qm'n"sw"‘(z%s {—w)

i+wd

1
X[im-— }Vs
2 1-+wA

As in formula (110), it is understood that A should be
replaced by A(—1).%

Let us form the “original” of the first term of (111)
using the relation (for f analytic in w and real for real w)

f(w) Imy Inw=mwf(—w) (112)

and also the identity A=2m(p+m)— (p+m)® and the
Dirac equation. We obtain

Orig[1st term of (111)J=+4=mw Inw{v.| Vo|vs)
+22%m? Inw(e, vV losy.  (113)

We see that the first term of (113}, and only this
term of 7o, would be removed by “imaginary charge
renormalization,” that is, charge renormalization of
Im,7o, and must therefore cancel against a similar
term in I;.

zss{—-'w}> (111)

Treatment of I;

As mentioned earlier, we shall employ the % expansion
for I. It is easy to show that terms with 221 are at
least of order 1? lnw. It is clear that charge renormaliza-
tion, if performed, would affect only 2=0 terms. The
term I gean®= I 1.2000° contains a logarithmically diver-
gent & integration. One can use the “rotation trick” to
extract directly the nonanalytic part of this term,

The lowest order w Inw contribution is contained in
the finite term Jy000%. As in I, one can use the “rotation
trick” to separate off the “renormalization term” pro-
portional to w Inw(v,| Vo|vs).

w? Inw Calculation

On the basis of the previous analysis, the w?lnw
coefficient arises from Jo, I3, and I3, and it is a simple
matter to verify this by an explicit calculation. This
result was established earlier in F-Y. We remark only
that after “imaginary charge renormalization” and
the elimination of gauge-variant terms proportional

® For the special case of the 1—S state, a Coulomb potential
and the usual gauge for V, the difference A(w)- ($*+-e&n)

vanishes and A is not & functlon of w. (e is twice the Schrédinger
binding energy.)
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to (V) and (V?), the entire »? Inw coeflicient, propor-
tional to (g?V), arises from the “vertex diagram,” I;.
(Here, the brackets denote an expectation value with
respect to Schrédinger wave functions.)

APPENDIX. BOUNDEDNESS PROPERTIES OF
SOME K, FOR n=1,2

We give here boundedness properties of several of
the K,’(p,p’) defined in Sec. 2 for =1 and 2. The
proofs are briefly outlined. The properties of these K,
supplement those of the K,(p,p") and L.(p,p’) of
Sec. 2 and permit stronger statements about I, for
the cases #=2 and 3 than theorem 3 of Sec. 2 and the
“main result” of Sec. 3.

Theorem A, K,"(p’,p) has the following behavior:

(1) K:™(p,p")=EK."(¢',9)-
(2) For p<p'<1: K\ "(p,p")=c Inp'+b(p,7’).
(3) For p(1; p")1: K(p,p") '
=[b(p,p") Inp'/p"* T+ [b(p,")/p"].
(4) For p'>p>1:K,™(p,p")
=[b(p,p") In(p'/p)/p" 1+ [b(2,0")/ "]

Proof. The symmetry property (1) is clear from the
definition of K,"°. For the proof of (2)-(4), we write
K®0 in the form

1 ™~ =z x+p|  |at+p
Klolo(p,p')fv—f dx In In
pp'de 21 Ja—p|  la—p
and divide the range of x integration into the three
intervals (0,p), (¢,#"), and (p’,). For these separate
regions, the analysis can be carried through in a simple
manner by expanding K;"°(p,#') in a doubly infinite
series according to the expansion
1+x 0 xi?k‘f‘l

1—x

+:a2<1
o 2k+1 —:a2>1

for each of the two logarithmic factors.

In
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Theorem B.

272 [tan‘lp tan—1p’

K\2(p p')=
= e
d tan~1p’
1= o)
2p

T tan=1p
+—(1- )a(p’—p)].
2p 4

Proof. This exact result is derived by contour
integration in the same manner as the similar integral
Ki(p,p") of Sec. 2. Note that K,2°(p,p") is a bounded
function.

Theorem C. Kzoow(P:?,) H K20110(P’PI>, and K ;%% (17,?’)
are bounded functions.

Proof. We can write these K5 in the form.

1 = x? +7’
K0 (p,pl)~— f dxK " (p,0)——In ’ (114)
' Yo 241 ja—p
1 p= a? +p
K20010(1,,P')~——f dxK1(p,x) In (115)
P Y 2 +1 ja—p
1 p= x x4’
K20(p 4 ) ~— f dxK "2 (p,x) In l (116)
P, 1) x2+1 x—[)/
Since
1 +p'| tan7ip’
——fdx i In T 2 ? =b(p")
? 2+1 |x—9p v’ ’

and since K;"(p,x)x, Ki(p,x)x, and K,"(p,x) are
bounded functions, as one can verify from theorems
A, B, and theorem 1, the left-hand sides of equations
(114)-(116) are bounded functions of (p,p’).
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The results of the preceding paper are extended and applied to the calculation of the new Lamb shift
orders of ow® In*w and ew® Inw [w=(aZ)?]. The final result for the 25—2P; shift due to the In?
and In terms, which has been previously published, is AE(2S—2P)) = — Luw[} In*w+Inw(4 In2-+14-7/48) ]
where L is Z* times the Lamb unit. In megacycles this is —0.25 for H and —9.5 for He*. The corresponding
new values for the total theoretical shift are 1057.70:£0.15, 1059.08-+:0.16, and 14047.2:+:3.0 for H, D, and
He*, respectively. These values incorporate more up to date estimates for the nuclear finite size effect in D

and He* than those previously reported.

INTRODUCTION

HIS is a direct continuation of a preceding paper,
which we shall refer to as I.! In I, order proper-

ties, with respect to the parameter w=(aZ)? were
established for the general term of the free-propagator
expansion of the bound electron self-energy. In this
expansion, the bound electron propagator is expanded

in “powers” of the external (Coulomb) potential. The

main result of I (theorem 4) asserted that the free-
propagator expansion is an expansion in orders of w
for what may be called the nonanalytic part of the
self-energy. In this paper, we shall be concerned
primarily with the application of these results to the
calculation of the new Lamb shift orders of aw®In’w
and ow?lnw (for hydrogenic atoms).? At the same
time, however, the general analysis is extended through
a discussion of gauge invariance (Sec. 2) and a quali-
tative consideration of the question of the convergence
of the free-propagator expansion {concluding section).
The results and notation of I will be used freely in
this paper.

The outline of material presented is as follows. In
Sec. 1, the sources of awf, aw? In%w, and aw® Inw terms
are studied in preparation for the later systematic
calculation of the logarithmic terms.® It is shown that
the new logarithmic terms arise from a finite and small
number of terms of the auxiliary % expansion introduced
in I. It turns out that the aw® and ew® In?w contribu-
tions are associated with the divergence like w3 or
Inw in the limit w= 0 of certain “standard” matrix
elements of simple appearance.

In Sec. 2, we introduce a particular form of gauge-

* This work was supported in part by the U. S. Atomic Energy
Commission.

1 Based on a dissertation submitted to Columbia University in
partial fulfillment of the requirements of doctor of philosophy.

1 Present address: Institute of Mathematical Sciences, New
York University, New York.

LA, J. Layzer, J. Math. Phys. (preceding article).

2 A, J. Layzer, Phys. Rev. Letters 4, 580 1960. The In? term
was calculated independently by H. Fried and D. Yennie, Phys.
Rev. Letters 4, 583 1960, and by G. Erickson, dissertation,
University of Minnesota, 1960 (unpublished).

3 A detailed calculation of the wt term can be found in the
author’s dissertation,

invariance test which proves very helpful in the cal-
culation of the logarithmic terms. The test employs a
special gauge transformation called a “w-gauge-
transformation” in which E and V are shifted by an
amount proportional to the parameter w. We show
that the “main result” of I (theorem 4) is invariant
to the w-gauge-transformation. In the application of
this gauge-invariance test, the favored role of non-
analytic terms in the free-propagator expansion is
again manifest. For the aw® Inw coefficient in particular,
it is shown that a large number of identities can be
written down by inspection connecting the coefficients
of matrix elements from 7, with #<3 and guaranteeing
the w-gauge-invariance of the aw® Inw coefficient.

Section 3 is devoted to a presentation of the method
and results of the detailed calculation of the new
logarithmic orders. The organization of the calculation
is based on the test of w-gauge-invariance outlined in
Sec. 2. It is shown that this gauge-invariance test
provides a strong check on the accuracy of the entire
aw® In?w calculation and also of a portion of the aw?® Inw
calculation. Special integration techniques are intro-
duced which enable all auxiliary parameters of inte-
gration to be eliminated. The matrix elements from
the various I, (#<3) then become freely convertible,
with the aid of the Schrédinger equation, and may be
combined arithmetically. This results in a decided
improvement in the conciseness of the calculation.
The final result is expressed in terms of a few simple
and manifestly gauge-invariant matrix elements which
can be easily evaluated for bound states of interest.
The work of this section assumes that the bound
state under consideration is an .S state. The very slight
modifications of the results necessary for non-S states
are given in the next section (Sec. 4).

In Sec. 5, the new theoretical values of the Lamb
shift are presented and compared with experimental
values for several bound states of interest. In a con-
cluding section, the question of the convergence of the
free propagator expansion is briefly discussed in a
qualitative way in the light of previous results.
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1. SOURCES OF wt, w?In?w, AND w’Inw TERMS*

In 1, the calculation of the lowest-order w?lnw
coefficient was discussed briefly. We turn now to a
consideration of the higher order nonanalytic terms
of order w?, #®Inw, and %? In%w. The “main result” of
I asserts that the first of these orders arises from
terms 7, of the free-propagator expansion with #<2,
while for the latter two orders we must consider also
I3. We shall first make clear the nature and location
of these higher-order terms without entering into the
details of the actual calculations. The results of this
section, and several of the mathematical devices
introduced in their derivation, will greatly facilitate
the later systematic calculations of the new logarithmic
orders.

To determine the coefficients of the nonanalytic
orders in w of interest, it is sufficient to analyze certain
matrix elements in which the parameter x or o=1/x is
absent. In the case of I, where the ‘“rotation trick”
has been used, these matrix elements occur directly in
the expression (I.111) for Im,J,. For I, with #>0,
where the % expansion will be used, we refer to the
matrix elements M,(w) of the following standard
form of the differential equation (1.99):

I (w)

—( )=-—7rzw*’*2M,,(w), (¢))]
dw\ mw’

where

Mn (.w) — .wDIQ-l-rl.-—ﬂ

(1+.wA)n+k-q/z
with
v=D/2+s+g+u+1 (3)
D=2k+tr+s 4+
=2k+r+s+14— 4)
=2k+tr+s+2——.

Here, » is the nominal order of the term I,” labeled
by %, ¢, 7, s, u. Q(p,D) is the corresponding numerator
polynomial in the #’s and $; D is the degree of this
numerator polynomial. For simplicity, we have con-
sidered only the generalized Schrodinger approximation
and “nontrivial” terms, that is, terms with no external
factors of €% or E— Eg,.5 For Dirac correction (to the
large component wave function)- terms, one replaces
(say) the left wave function (%| by the Dirac-correction
“wave function” (#/| and makes the replacement
D= D+2in (2) and (3). The modification for “trivial”
terms is obvious.

The separation of the factor w2 in (1) arranges
that I,(w) is of lowest order z? for »s£3 or »? Inw for

¢In accordance with the normalization of I, a factor of « is
omitted.

5 Here en?=2(m—Es) where (m—Eg) is the Schrodinger
binding energy.
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v=3, modulo cw’, provided that M ,(w) approaches a
constant in the limit w=> 0. We shall show later that,
except for possible lower-order terms proportional to
w™! or w2, the “spectrum” of M ,(w) is of the form

M ,(w)=gw*+b Inw+c+higher order. (5)

Thus, from (1) for wf and w?® In%w contributions, M, (w)
must contain a w~* or Inw divergence, respectively, in
the limit w=>0, and for »®In’w it is necessary in
addition that y=3. For %? Inw terms, the Inw divergence
is necessary for »s£3, but if »=23, the constant term is
sufficient.

Separable Representation for M, (w)

The structure of the M ,(w) of (1) can be simplified
and brought closer to that of the matrix elements of
Im, 7, by going over to a ‘“separable” or “product”
representation as was done in Sec. 2 of I with the aid
of identity (I.13) and the single integration parameter
A, for k=s=0 terms.

To achieve the separable representation for arbitrary
k and s, we shall borrow a mathematical device from
Fried and Yennie® and introduce a term 8-p into the
denominator, where 8 is an infinitesimal differentiation
parameter. The required number of §’s can be brought
into the numerator by repeated applications of the
operator Vg or Vg% The parameter A is used, similarly
to its previous role, to arrange that the denominator
is raised to the n-1 power before the start of the
differentiation.

As an example, consider the matrix elements
M ,%= M, defined by

qu"=w"‘1fdl’1 <u

g=0, 2.

”

D ©

Then, by the method outlined above, we obtain

VV(p)*
[1-+wh e

w O\_ 1)k+<1/2
M¥%=Cy, f AIN———--M () (7)
1 Neta
M¥(m)=lim (V “’)"1 :
p=lim (V) 4|————
SR = N PPN
1 1
Ve Vs u> (8)
14nA+B-ntp  1+nA+B-7Pp
where
n=w/\ )
and

0 (A_ 1)k+ql2 1 2
Cgk= [f d)\ T .
1 AZE+S (2&+2)!

8H. M. Fried and D. R. Yennie, Phys. Rev. 112, 1391 (1958).
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By using this construction, every M.,(w) can be
written, as in the example, as a convergent integral
over \ of the corresponding separable M ,”(3) times a
polynomial in 1/\. The nominal order in % of the
M .(n) is the same as the nominal order in w of the
M .(w) and the degrees D of the numerator polynomials
are also the same.
~ We observe that an expansion of the M ,(n) in orders
of 5 is also an expansion of the M,(w) in orders of w.
The “spectrum” of the M ,(w) is thus fully determined
by that of the matrix elements M ,(n). The structure
of the M.(n) is essentially the same as that of the
matrix elements of Im 7.

Standard Maitrix Elements for w? and
w? In2w Terms

We have seen that a necessary condition for w? and
@ Infw terms is that the matrix elements M,(w)
contain a w—? or Inw divergence, respectively, as w= 0.
The same statement holds true with regard to the
matrix elements of w2 Im [, since we have

(10)
(11)

We seek, therefore, to recognize and locate matrix
elements with such divergences.

As far as recognition is concerned, it turns out to be
sufficient to consider a small number of “standard”
matrix elements of separable form. These matrix
elements are “nontrivial” and in addition have no
external powers of w; that is, from (2) (D/2)4+n—3=0
in the generalized Schrddinger approximation. Also,
the denominator factors of (14-wp?) are reduced to the
minimum power necessary for convergence of the
matrix elements. All possible matrix elements meeting
this description are given below. To save space, we use
a dash “—"" to indicate a factor (1+wp?)~L. For #>0,
we really have in mind the variable % defined by (9)
rather than w. The equivalences were obtained by
using the Schridinger equation:

M= {VP—V)=—§Vp—)=1(p*"—)
Mp=(V—V)=—KV—=Vp)=p*— V)
Me={Vp—Vpy=—¥p*p:i—Vps)
Mp={pipi—V —pips)
M= | p—V |uy=—3(u' | p*—| u)
Mp={p:;V?p;)
Mo= (| V?|u)=—3u'| V*|w)
Ma={'|p;Vp;|u).
These forms arise for #=0, 1, 2, and 3. For >0, the
index # is determined by the number of numerator
V’s. Equivalences are with respect to the coefficients

of w-¥ and Inw. Terms with Dirac corrections to the
small component wave functions or higher-order Dirac

Imywt=—w}

Imy In*w= 27 Inw.

(12)
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corrections to the wave functions are finite in the limit
w=>0 and need not be considered.

In My and My, the p; are to be interpreted as
differential operators acting toward the wave functions.
Mp, Mg, and My are finite in the limit w = 0 and
therefore need not be further considered.

For the evaluation of the leading behavior of the
matrix elements M 4 to Mg, it is convenient to define
the quantity ¢(0) proportional to the Schrédinger
position-space wave function at the origin:

0= [Esulp) (13)

The matrix element M 4 diverges like w™? in the limit
w => 0 with a coefficient proportional to ¢#(0). All the
other matrix elements, Mz to Mg, diverge like Inw in
the limit w=>0 with coefficients agaih proportional
to ¢2(0).7 It is not difficult to derive the following
lowest-order estimates for these matrix elements:

M g(w)=(1/22*)w W?(0)+const-+higher order  (14)
MB:'-'M(}:%MD:ZME
= (1/472¢2(0) Inw-+higher order. (15)

The equivalence M ¢=—2Mg can be demonstrated
by using the differential equation satisfied by #’
(for S states):

2 ‘Ho’u‘l'—'—" 2[(A/2)+ Vo]us’

== (m— E) Vous e %{7‘ VoP,"Lts—- éus, (16)
where
1 1fm*—F  (m—Eq)
=~ (o= )= 2 } (17
w wl miw mw

“Spectrum” of M, (w) for n>0

In spite of the infinite number of matrix elements
introduced by the % expansion, the standard matrix
elements M4 to Mg are the only ones that need be
considered as far as recognizing Inw or w* divergences
are concerned, as we have previously stated. The
reason is that the Inw part disappears as soon as the
degree of the numerator polynomial is large enough
that the external factor of w for the matrix element has
a positive power. Furthermore, the parts of the matrix
elements yielding w~* divergences can be isolated and
are then seen to be derivable in a certain sense from
the matrix element M 4; in particular, they have the
same ‘“‘spectrum.”

These assertions follow from the statement and
proof of theorems A and A’ below. The most important
consequence of these theorems, aside from the verifica-
tion of the form (5), is that »®In?w and also w?lnw

7 For the 2— V form of M4 and the 3—V form of M g, the ¢2(0)
factor can be separated off ‘‘automatically” by performing the
transformation #; => w™¥p; for i=1 to n—1 and then taking the
limit w = 0.
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terms arise from only a finite and small number of
terms of the & expansion.

In the derivation of theorems A and A’ as well as
the later systematic calculations, a good deal of use is
made of the simple operation wD,, where D,=d/dw.
This operator applied to an arbitrary power of w, say
w®, leaves its form unchanged and in this sense is
“spectrum preserving.” However, it has the additional
useful property that it singles out and removes Inw
and “constant” terms since wD,Inw=1 -and wD,
constant=0 and (wD,)"lnw=0 for »#>2. Further-
more, the operator wD, applied to Inw and a “higher
order” term f(w) leaves f(w) of “higher order” (than
unity) as is easily shown with the aid of L’Hospital’s
rule provided suitable differentiability requirements
are imposed on f(w).

We are now ready to derive the theorems of main
interest in the present section which are stated below.

Theorem A. Consider the matrix elements M, (w) of
(1). If D>D,, where D,=0, 2, and 4 for =3, 2, and 1,
respectively, then M,(w) has no Inw part and the
“spectrum” of M ,(w) has the form

n=23: M,(w)=const+higher order
n=1, 2: M,.(w)=aw +4const+higher order.

Theorem A’. Consider the Dirac correction matrix
elements M,/ (w). If D>D, where D,=0, 2 for n=2
and 1, respectively, then M., (w) has no Inw part and
its “‘spectrum” has the form

M, (w)=const-+higher order.

We consider first the proof of theorem A. For I; the
proof is based on the boundness properties of the
various Kz*(p,p") of I together with dominating argu-
ments in p space. We assume here and in the remainder
of the proof that a separable representation is employed.
The A integration is always well behaved and we
restrict attention to the matrix elements M, (n) with
p=w/\.

Consider now #=2 and 1. To save space, we use the
abbreviation “m,” a boldface m, to denote the factor
1/ (1-4-np®)™. The proof proceeds according to one of the
two following programs:

(1) Whenever this is possible, “synthesize” the n=3
situation by domination of the numerator p’s in p
space and domination of #(p) by the 1—S wave
function #:-s(p) and the use of the Schrédinger
equation. Then the proof for »=3 applies. As an
example, for n=2, by using |po-p2| <F(po*+ps), we
obtain

(| pi— V2V pi—|u) <n<trs|—VP—V$*—|ur_s)
B 217(‘2!me I — sz__ V— V{ u1_.s>

=42 f Bpod®psttrs(po)ers (P3) KPP (whpo,wtps)
=-+2¢2(0) K 2%(0,0) = finite,
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(2) For certain terms, it will not be possible to
‘“synthesize” the n=23 situation. As a matter of fact,
these terms must be of one of the following types

n=2:
M =¥ u|rVE'+1(p")*1Vs|u)
M gt =n{u| tVK' (p2)"p;V pis|u),

n=1:
M F=ntu|k'+1(p) 2V s|u)
Mpt=n*u|k (p2)*p:V p:s|u),
where 2>1, 2> k.

By using the Schrddinger equation to the left, C and
D, with n=1, go over to types 4 and B, respectively,
and therefore it is sufficient to consider 4 and B of
the »=2 situation. In 4 and B we expand the end
factors of 1/(1-+n2?% using the identity

1 zn: 1
(1-|-x)"~ =1 (1+4-z)*

and then ‘‘synthesize” the #=23 situation for the
remainder terms by using the Schrédinger equation,
For the remainder terms, the proof for =3 applies.

For the lowest-order term of thjs expansion, we will
have

M b= o¥(u| VK'+1(p)%V | u)
M %= o¥u| VK (p2)*p:iV ps| w).

These forms for M 4* and M * can be expressed as
linear combinations of (nD,)"M’(n) with m>1, where

My =u|Vy—V]|u)
My =(u|V—2p:Vp:| u).

These matrix elements are identical with the matrix
elements M4 and M ¢ of (12) and we know, therefore,
that M, diverges like 4~% but has no Iny part, and
Mp' diverges like Ing. It follows from the properties
of the operator nD, discussed earlier that the M3z*
are finite while the M4* diverge like 5% in the limit
n=>0 but contain no lny part (and, in fact, no “con-
stant”’ part either).

This completes the outline of the proof of theorem A.

The proof of theorem A’ is straightforward. One
uses the asymptotic behavior at high p of #'(p),
which is like p u(2).

2. GAUGE INVARIANCE

We know that AE=3, I, remains invariant under
the transformation

V= V+a; E= E+tag, (18)

where ¢ is an arbitrary constant. This invariance

. property has nothing to do with the wave functions.

It is an attribute of the propagator 1/p—k—V+m
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which is part of the operator whose expectation value
is AE, The individual terms I, of the free-propagator
expansion are, however, not gauge invariant and
for this reason a gauge-invariance test provides a
useful check on the consistency and accuracy of the
calcalation.

The full gauge invariance of the propagator is
expressed by the fact that it is a function of {(p,—V ).
Thus, it is invariant to simultaneous and identical
formal “‘displacements™ of #, and ¥V, by an arbitrary
operator Op: pu=> ppt+0u; V= V40, The use-
fulness of a gauge-invariance test depends on a
suitable specialization of the operator 0,.

A natural limitation to impose on 0, is that it be a
constant “four vector.” In this way, the displacement
will not interfere with the free-propagator expansion. In
the present problem (Lamb shift} it is not convenient to
carry the “space” part of this displacement since the
actual potential (in the usual gauge) has no space part.
For this reason we restrict the following considerations
te displacements of the type (18).

An especially convenient and practical form of
gauge-invariance test results if we further limit the
gauge transformations to those of the type

Ve Vi-gum

(19
E = E4-gum,

where g is a parameter independent of w. We call this
special gauge transformation a “w-gauge transforma-
tion.” In terms of the scaled potential ¥V, and the
scaled Schrodinger binding energy, }es?, this trans-
formation is independent of w:

Vo= Vot g=TVolg)
Yea?= (m—Eg)/mw= Jea(g) =Feal—g.

This has the consequence that the formal scaling
properties of a term I,* of I, are not affected by the
w-gauge-transformation 7,”>= I.’{g). One can then
use the same formal process of reduction for 7,°(g) as
for 7,*. In particular, one can employ the usual
differentiation device in the form

I’ L
{g}) =w M (w; g),

(20}

e (21
- (21)
where M(w;g) differs from M{w) in that V= V(g
in the numerator and ea?=> ex(g) in the denominator
and numerator, This has the desirable result that the
gauge-invariance test can be applied at a late stage of
the calculation.

‘We Hst below seven assertions which summarize the
principal results about w-gauge invariance in connection
with calculation of nonanalytic terms of interest with
particular reference to the »? Inw calculation.

(1) The “main result” of I, Sec. 3, for #>3 is
invariant to the w-gauge transformation provided that
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lgl is suitably limited. A suitable limitation is
lg] <Pem’=1/(20%)
for n—.S state.

(2) The ! and »® In*w contributions to each I, are
w-gauge invariant.

(3) 1.(v* Inw; p—I.(w* low) = w* Inw{e.'g+a.’g
+a.2g%) where a,’=0 for #>3. (More generally,

In(g)~I, is 2 polynomial in g for orders nonanalytic

in w but an infinite series for analytic orders.)

{4} We must have EM(} a,'=0fori=1, 2, and 3.

(5) The ceeﬁlcxents a.* are functionals of V. We can
then classify the a.* according to the number of V’s
involved in the numerator of the corresponding
“matrix element.” This classification applies before
the use of the Dirac or Schrédinger equation. The
symbol ¢,” indicates that the matrix elements cor-
responding to this coefficient have » V’s. Then, we have

r<n
+r<3. @)
Furthermore,
2
3. e, =0, (b)

ne=l}

(6) The “mechanism™ of the cancellation expressed
by (b) is given by the following identities, all of which
can be derived “by inspection.” For g:

Iy(g)=—I(g)=4
fz(?}‘:—‘ ‘”Ig{gs}ﬁ.g.

Furthermore, B=34

For g%: (a) 1V, h=—%L=I;
(b) OV's: Iy=—3Li=I;
Forg: {a) s Ip=—1I,
), WV Li=—1I,
{c) 0V’s: Ip=—I

(7) Provided that the Dirac or Schrédinger equation
has not been used in the reduction of matrix elements,
assertion 5(b) and the identities of assertion 6 must
hold separately for 4+, +—, and —— and for the
generalized Schrodinger apprexzimation and Dirac
corrections,

A brief discussion of these assertions is given below.
Details are easily filled in,

Assertion 1. The validity of this assertion is easy to
see. The limitation on g is necessary in order that
&(g)>0 where é=(m?— )/wiw, since for £(g)=0
the integrals I, will diverge, in general. One can show
that the restriction on g given insures that &{g}>0
for lw| <1,

Consider now the effect of the replacement
Vo=> V@(g) If one or more of the V¢’s are replaced by
a g, it is easy to show first of all that the existence of
the integrals I, is not destroyed, and secondly, that
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the lowest order of the nonanalytic part is not lowered.
In fact, it is always raised for >3,

Assertion 2. The appearance of w! and »* Inw terms
is associated with the divergence like w? or Ilnw,
respectively, of certain matrix elements with no

external factors of w or eq® In every case, one finds

that the replacement of a V by a g removes this
divergence and, therefore, the w* or Inw parts of these
matrix elements are w-gauge invariant.

Assertion 3. In view of assertion 1, it is sufficient to
consider I, with #<3. Since the number of numerator
V’s is then finite and <3, the validity of the present
assertion clearly depends on the effect on the co-
efficient of w’lnw of the g dependent part of the
denominator [14+0A(g)J*™* 92, To investigate this
point, it is convenient to expand the inverse of this
denominator in powers of o[e&—eX(g)]/(1+74), an
expansion which is permitted according to the in-
equality |€—e(g)| <& which follows from the re-
striction on g mentioned in the statement of assertion 1.
Due to the appearance of ¢ in the numerator of this
expansion, successive terms of the expansion will have
lowest order nonanalytic in w parts that are of succes-
sively higher order in w. From this fact, the truth of
assertion 3 follows immediately.

It is clear from the method of proof that the result
that J.(g)—1I. is a polynomial in g rather than an
infinite series holds generally for nonanalytic in w
terms but not for analytic orders such as %

Assertion 4. The requirement of w-gauge invariance
combined with assertion 3 says that

3 3
2 2 aig=0.
i=] n=p

Since, with the restriction on g given in assertion 1,
this must hold for all g in a certain fixed (w independent)
neighborhood of g=0, it follows that the coefficients of
the g* are separately zero.

Assertions 5 and 7. The proof is straightforward.
The important peint is that the gauge invariance is a
property of the propagator alone. For assertion 5, we
can make the formal replacement V=iV in the
propagator. Then the coefficients a,’ in assertion 4
will be polynomials in A,

Assertion 6. The trick hereis to algebraically expand
the g’s out of the propagators to begin with and to use
the restrictions of 5(a). Then the cancellations become
obvious and appear as “structural identities,”

3. w*ln*w AND w?Inw CALCULATIONS

The sources of %*In’w and w’lnw terms were con-
sidered in Sec. 1. The relevance of gauge invariance to
the 2% Inw calculation and a practical test of gauge
invariance were discussed in the preceding section.

In this section, we shall present the ‘“‘systematics”
and results of the calculation of the #® In*w and ® Inw
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coefficients, These terms will be calculated together
since, as will be made clear, the relatively short »’ Inw
calculation is in a certain sense embedded in the much
longer w?lnw calculation. In particular, a gauge-
invariance test applied to the %®lnw terms auto-
matically ‘“‘covers” the gauge-invariant »®In’w con-
tributions from each 7.

We will begin the calculation of »®In®w and »*Inw
coefficients by considering the contributions due to 1.
In a way it would be more appropriate to start with I
since the separation of the $?(0) factor for w»®In%w
terms, without reference to the form of the wave
functions, occurs “naturally” only for I; This is
analogous to the case of the w! coefficlent which occurs
naturally in the above sense only for n=2.

There are two good reasons, though, for starting
with o, In the first place, it will turn out that the
entire »? In’w coefficient is due to Iy, a statement which
is w-gauge invariant. The »* Inw parts of I, I, and I3
will be shown to cancel.

In the second place, the method that we have
chosen to use for Iy, namely that of considering Imy,
is a concise alternative method to the %k expansion used
for #>0 and, therefore, the I, calculation can be
presented independently and in detail. Incidentally,
as a check the % expansion was tried for I, also and the
final results obtained were the same as those presented
here.

I; Calculation

An expression for Im.Jy is given in (I.111), The
original of the first term of (1.111) is given in (I.113).
The first term of (1.113) cancels against a similar term
in f; and will be retained intact. The second term
contributes to @°lnw through large-large Dirac cor-
rections and small-small Schrédinger. We obtain

I, (first term of 1.111)
=man’uw® Inw times 4/%? Inw(v,| V{v,)
40 [ V20— Kulp:V?pilu). (22)

Consider now the last three terms of (1.111) in
the generalized Schrédinger approximation. After a
straightforward algebraic reduction involving the use
of the Schrédinger equation for the V, term, one
obtains the following result. (Lower-order contributions
of order w? have been dropped.)

Im Io (Schrodinger; last 3 terms of 1.111)
=mwu? times [5/4—3wD,, Ku| A%/ 1+wA | u)
A {14 3wDy Kul V (pi/1+wA)V pi| u)
+3e2(u| A2 u)—68(u| V' |u), (23)

where the quantity 8§ is defined by the relation (17).
Let us now consider the Dirac correction part of the
last three terms in (I1.111). The Dirac corrections to
small-small are of higher order than %? and, therefore,
have an original of higher order than w?®lnw. The
Dirac corrections to large-large yield the following
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expression, after some consolidation.
Im, I, (Dirac; last three terms of 1.111)=mar’s?® times
[3—3wD, J(u'| A2/ 1+wh |u)y+4(u’ | V2| u). (24)

To obtain the total %?lnw contribution, we must
add the originals of (23) and (24) to (22). In order to
combine gauge-variant terms with [y, I3, and I3, it is
convenient to use the following easily proved equi-
valence relative to u® In*w and % Inw but not %,

Original mwPM (w)= —u? f i dw(l/w)M (w) (25)

where M (w) is a matrix element with a “spectrum”
of the form

M (w)=aw#+b Inw+c+higher order. (26)

By using the equivalence (25) we obtain the final
result

Io(w? InPw; w? Inw) = Iy (gauge-var) -+ I,[¥2(0)]
Io[¥*(0) J=mw*w® Inwy?(0) /4" — 1],
To(gauge-var) = tr*u® times 4/%%(v| V|v) Inw

@n
(28)

165 Imo(u| V] w)— (5/4) f " ()

X{(u] 8%/14wA|u)y— (u] piV (ps/ 14+wA)V | u)
—3(' | A%/ 14-wA |u)} — 1 Inw(u| p; V2P| u) ‘
— e Inw(u|V2|u). (29)

Note that the ¥2(0) part arises from the wD, opera-
tion acting on the lnw parts of certain matrix elements
and is, therefore, w-gauge invariant.

The »? In®w part comes from the Dirac and (p:Vp;V)
terms of the gauge-variant part. From (29) and the
indefinite integral /" Inw/w=1 In*w, we find?®

To(w? In*w)=mw? In"w[+37]. (30)

I;, I, and I, Calculations

The results of Sec. 1 concerning the sources of %2 In?w
and w?lnw terms from n=1, 2, and 3 may be sum-
marized in the following statements. The notation and
terminology is that of Sec. 1,

w?In*w terms arise from “nontrivial” terms which
satisfy the condition

y=3 (*)

and which, in addition, have corresponding matrix
elements M,(w) with Inw parts. The latter condition
restricts the degree I of the numerator polynomial in

8 As stated in the introductory remarks to this section, we will
show that this contribution from I, is the entire contribution of
order #*In*w to the Lamb shift. This value of the ®In%w co-
efficient was announced at the Washington meeting of the APS,
May, 1959,
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the #’s to values satisfying D<D,, where for the
generalized Schrodinger approximation D,=6-2n.
M .(w) with Dirac correction wave functions have Inw
parts only for #=1 and +- with D,=D1=2.

For brevity, we shall call terms satisfying the
condition ( *) above (y=3) “star terms.”

%® Inw terms arise, in addition to the above sources
for w’ In®w from “star terms” with D>D, and from
“nonstar” terms which have Ma.(w) with Inw parts
and therefore with D<D,.

Nonstar Terms

The simplest category of »?Inw terms to discuss is
that of nonstar terms. Let us define the quantities 4,7
by the relation

> M (w; Inw)=A4,” Inw. (31)

M (w; Inw) denotes the Inw part of M (w). The sum is
over all terms with a fixed value of v and »#. Note that
A, is proportional to ¥2(0). It follows from (31) and (1)
that

L.(non*; w? Inw)=mr2w* Inw 2, (4."/v—3) (32)
y=1,2, 4, and 5.

v cannot exceed 5 because of the restriction D<D,
and the obvious condition g+s+u<n+1.

The evaluation of the coefficients 4. is simple.
The “standard” matrix elements yielding Inw parts
are the matrix elements Mp to Mg listed in (12). The
Inw coefficients are given in (15). The exact number
of denominator factors does not affect the Inw co-
efficient. When D= D,, one can, therefore, discard the
denominators and perform the simple y integration
for the numerator. The coefficient of lnw is then
computed as a linear combination of the coefficients
for the matrix elements Mg to Mg For D<D,, the
procedure is similar but it is necessary to first expand
out the lower-order contributions from the matrix
element. It should be noted that this introduces a
dependence on the power #-+%—g/2 of the denominator
factor (14+wd). '

Elimination of Auxiliary Parameters;
Definition of *M

In the systematic calculation of star terms, it proves
very convenient to use a ‘“‘separable” representation.
In Sec. 1, the separable representation was achieved
through the introduction of the single parameter A.
We will now show that as far as »?In% and %®Inw
terms are concerned, even the parameter A can be
dispensed with.

A single example will suffice to illustrate the general
method. Consider the matrix element for #=3 and k=1

*”

u> (33)

Vg2

Ma”(w)=M(w}=wde “<uj

[14wAD
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Let the matrix element *M be defined in the same way
except for the power of the denominator (1+wA), which
is raised from 4 to 6:

V52 »

*M (w)=wde “<u m u) .

Then *M (w) can be written in separable form without
introducing the parameter A. For we have

(34)

wp? 1 1
imVg? —
20" [1+wA+B-whplt

[1+wAF 4.5

and

f ay ﬁ 1
[1+wA+8 -wip]; s [1+whi+6-wip;)

Now we can write *M (w) in terms of M (w) since

1
= (I_‘“%wpw) (1+3wD,)—r

[14wA ] [1+wd]

g9 1
=|:1+——'wa+-—-(wD,,,)2] 33)
20 20

[14wA])
and we have also the commutation relations
[w,wD,]=~w
[w, (wDy)*]= ~ 2wDywt+w.
From (33), (34), (35), and (36) it follows that
*M (0)=[2-+bwDotc(@D)IM@w).  (37)

Since M (w) has no Inw part, we can restrict ourselves
to the “constant” terms in (37):

*M(w)=3M (w);

(36)

(38)
or,

M (w)=5/3*M. (39)

Thus, we have expressed the original matrix element
M(w) as a multiple of the matrix elements *M (w)
which can be written in separable form without the
introduction of the auxiliary parameter A.

In the following discussion *M.(w) will always
denote M,(w) modified so that the denominator
(1+wA) is raised to the right power to give a separable
representation without the introduction of the parame-
ter A. M is expressed in terms of *M by using the
formula '

1 m+k-—1[

wD,
[1wh e 19

**—]———‘:“ (40)
i 1+wAl

and the appropriate commutation relations between
powers of w and wD,, of which (36) is a particular
example. This yields a relation of the type (37) giving
*M in terms of M which is then “inverted” to give M
in terms of *M.
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If M (w) contains an Inw part, the situation is slightly
more complicated than in the above example. In this
case, the wD, part of the relation between M and *M
must be retained. Thus, we have in general

*M=[a+bwDyp+c(wD,)*+ - - - const(wD,)* M
M= [1~b/awD, M.

The equivalence is with respect to the Inw and
“constant” terms only (not w—* terms, for example),

For wD,, part, we need pick up only the Inw part of
*M and, therefore, the wD,, part is always proportional

to ¢*(0).

(41

Star Terms with D> D,

We consider first star terms with D> D,. This case
arises for n=23 and 2 only, not for n=1, These terms
contribute to ## Inw only and, as we shall show, they
are all proportional to ¥2(0).

In the case of Iy, po and p;3 in the numerator and in
the denominator factor (14+wa) may be set equal to
zero.! The corresponding separable *M have the
following form

’s
u> -

Xnnd?(0)  (42)

I
u) =

Vuud?(0)  (43)

(= V)*Q:(pr.22)
+wpt)™(1+wps)"

Xoun (w) =20" “<ul a

(= V)Qu(pr,p2)
(1 +upd)”

Vou(w)=w “<u; a

Znn=Xmn OF Vpn

“ (= VYQ(:pr,p2) ?
= (0 o)y, (44
< !(14—?12)’“(1'{“?22)"{ > )

where for an arbitrary operator R

(0| R[0)= lim (#IR[#). (45)

The Q, are quartic and the Q, quadratic scalar poly-
nomials in the vectors p1, 2. We list below all possible
such polynomials with corresponding letter symbols
introduced for convenience in later reference. We have
taken into account “left-right” symmetry.

D:Qu=p1p2 G:Q=(psp2)* I:Q.=p:*
F:Qu=pF H:Q:=(prp)p® J:Qu=pi'ps
By making use of the identity

P po=—3¢+3(pr+p)

where g=p1—p, and the symmetry of the S-state
wave function, we can use instead of the above integrals,

(46)

9 For the justification of this statement, compare the concluding
remarks to Sec. 3 of L.
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the set
Ym‘n=Emn;an an=Imn,]mmen

where the integrals E,.,, Km, are defined by

(47)

E:Q=¢ K:Q.=pi¢. (48)
The necessary relations are
Dmn = %Emn'l'% (an+an)
Hmn= '—%Kﬂm_i_% (Imn+]mn) (49)

Gmn= _%(Kmn“i_Kﬂm)—*‘%Jmn—*'i‘(Imn+Inm)-

The quartic set X, can now be expressed in terms
of the quadratic set Y,n=Epnn, Fmn through the follow-
ing relations, obvious from (44):

Imn=an_Fm—‘l,1l;
Jmﬂ=Fm,n—1—an;
Kmn= Em—l,n_Emn-

The limit integrals E,.. and F.. are given explicitly
below. .

E ——“<0'V ot V0> (51)
" 1+ (14"

? .
Fra=—{ 0|V v V(o). 52
<l A+ (A" > 2

By using the fact that wD,Ym.(®@)=>0 as w=0
together with the defining relation (43) and formula
(48), one can easily derive the following difference
equation for Vo,n=FEun, Fun.

(50)

MY 1,01 Ym0
A iy (53)
m+n—1

A knowledge of Yy for all m is thus sufficient for the
calculation successively of all Y, all Va3, etc. and,
therefore, all ¥,,, through formula (53).

The evaluation of the integrals Enn, Fun is simple.?
The following results are obtained.

1 (2m—-3)!!(2n—3)!

2n2 (m—1) (n—1)12m—1271
(—=Dl=1

(54)

(—)m(= 1)
(m—1)(n—1)!

1
anz_[6m1 In2 IF

2m?

I(y,3)
X lim D, D, J (55)
y

y,2—1

I(y,z>sln[ (56)

(z4+y*)]
2 |

0 We used tables of sine, cosine, and Laplace transforms given
by A. Erdelyi, editor, Bateman Manuscript Project, Tables of
Integral Transforms (McGraw-Hill Book Company, Inc., New
York, 1954), Vol. 1.
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Consider now star terms with D>D, from I,
These terms arise either in the generalized Schrodinger
approximation for M (w) with a quartic polynomial in
¢ in the numerator or for Dirac correction terms with
a quadratic numerator polynomial. A closer analysis
shows that Dirac correction terms do not contribute;
the corresponding M (w) all approach zero in the
limit w=> 0.

The Schrodinger quartic terms have u®Inw parts
that also are proportional to ¥%(0) and, in fact, the
integrals involved can again be expressed as integral
linear combinations of the E,. and Fn,. The necessary
relations are given below. We use the notation

M[0:(p)VO0(p)VO3(p) ; kym,n]

. . < 0:(p) 0:(p)
=lim wP2 Y u
= [+upl [+upTr
03(p)
— . (57
rupT u> (57)

In the present case, D=4. There are a total of 21
possible scalar quartic numerator polynomials in the
#’s, in a momentum representation. Ten of these forms
are eliminated by the first relation below. The remain-
ing 11 are accounted for by relations 2-7 and left-right
symmetry.

The proofs of relations 1-7 are simple. The basic
formula is the expansion identity (with x=1wp?)

(4a)r=1=5 3 (14x)+, (58)

k=1

Use is also made, according to need, of dominating
arguments in p space, the boundedness properties of
the K,*(p,p’) given in I, the Schridinger equation
(usually to “‘synthesize” the »=3 situation), the wD,
operation and the properties of the “standard” matrix
elements given in Sec. 1. If p; enters quadratically
(or quartically) in the numerator, the index m in (57)
=2 and it is occasionally necessary to use this fact.

Integrals for I, (Quartic-Star)

1. M (w) involving botk po and p, approach zero in
the limit w=> 0 and may thus be discarded.

. M(VpVpip?; 1,m,n) =2D,4(0)
. MVVp; L,mm)=2F,.4*(0)

. M(V§2V 5 1,mn=2F »?(0)

. MV 20,V pi; Lmn) = Sma2(0) (m>2)

[ O I )

1 (59)
Smn=* 1/('”’1«"' 1)_2 Z Hmk
442 k=1
6. M(Vpip;Vpipi; 1,mm)=Tuaif*(0)(m=2)
Tmn=Dmn+'%Smn
7. M(Vp*V; 1,m,1) = constw™*
— 4L 2 (0) (m>2).
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Star Terms with D<D,

These terms include all gauge-variant contributions
to w¥Inw and also all #?In’w terms. The method of
organization is adapted to the gauge-invariance test.
We will write the various M,’(w) for n=1, 2, and 3
(with »=3) in the following way:

My (w)= (M) (w)+af?(0) (60)

where ¢ is a numerical gauge-invariant constant and
(M").* is a gauge-variant “standard” matrix element.
The equivalence is relative to Inw and ‘“‘constant”
parts only.

The standard M’ will be formed from the separable
*M and will be of lowest order w*, Inw or “const”
with the minimum power of denominator necessary
for convergence. The matrix elements M4 to My of
Sec. 1 are examples of standard M’ with the dash “—"
interpreted as 1/14-wp® These matrix elements in fact
exhaust all “nontrivial” standard matrix elements
except for two from #=1 involving Dirac corrections
to the small-component wave functions:

1/'102('081 VA_.I‘I)8>Dir_=‘MI

1/w%(v, | Voysy- p|ve)oic=M; @V

where “Dir” indicates the Dirac correction part. The
“renormalization term” of #=1 is assumed to be
separated out. In addition to these matrix elements,
there are also a number of “trivial” matrix elements
such as exX(V), €,,X(V?), etc. ;

After testing gauge invariance by the method
indicated in Sec. 2, the part of the I, results containing
the standard M’ from n=1, 2, and 3 and the gauge-
variant part of the I results will be combined into a
small number of manifestly gauge-invariant matrix
elements. These will then be evaluated for the particular
S state under consideration.

The purpose of the standardization of the M’ is to
permit this combination of matrix elements to be
effected in a simple arithmetic way.

It is not obvious a priori that the desired separation
(60) with constant “e” and standard M’ is possible,
but a consideration of all possible cases shows that it is.
The derivations of the necessary relations are simple
and use the same “ingredients” as the proofs of relations
(59). The ¢*(0) integrals are again linear combinations
of the Enn, Fma of (51), (52). As examples, we list the
following equivalences for quartic star terms from I,
using a notation that is an obvious extension of the
notation of (57).
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Integrals for J; (Quartic-Star)
1L MVt 1im)
=cw i+ M (Vp'; 0,1)+4F .*(0).
2. M(p:Vpip*; mm)

= M(p:V pig?; 0,1) +4 i Di*(0)

+ é (1/8)(1/2222(0).  (62)

3. M(P;P,'Vpgpg; m,%)
‘__%[M(P%V:xbﬁﬁg: m:n)—i_M(ib‘VPt??) n,m)jy

(for S states only).
4. M(p*Vp*; mn)

=M(pVp*;1,0)+4 kz; Fra?(0)

+O T W/,

Polynomials Q(p,p) and Dirac Algebra for
Star and Nonstar Terms

The form of the polynomials Q,(p,p) in formula (2)
can be predicted in advance on the basis of rotational
symmetry and the value of », #. These polynomials
have rational (usually integral) coefficients which can
be read off from the results of the Dirac algebra
reduction. It is necessary to keep in mind also the
integral binomial coefficients associated with the %
expansion.

For S states, the Dirac algebra reduction may be
simplified by using a trace technique which auto-
matically eliminates “spin-orbit” terms. If the numer-
ator is denoted by N, then for the -+ part, for
example, it is easy to show that rotational symmetry
implies that A,NA; can be effectively replaced by
7 Tr(ANA) =3 Tr(A4N).

Results for I;, I, and I,

We list below the principal results for n=1, 2, and 3.
Each I, is divided into a “¢*(0)” part and a “gauge-
variant” part, the latter containing the standard
matrix elements M’. The notation Mx® with
X=A, B, ——J refers to the standard matrix elements
Ma, Mpg——Mpy of (12), in the form appropriate to
to I, (#nV’s in the numerator), and the matrix elements
My and M; of (61). The dash “—” in (12) is to be
interpreted as 1/(14wp?). The “renormalization”
term of I, proportional to (z,| Vo|2,), has been omitted.

For convenience in carrying out the later non-S-
state calculation, we have retained the matrix element
M p which for S states is eliminated by relation 3 of (62).
The convention is understood that for S states the
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coefficient of Mp should be added to that of M¢! and
only the latter matrix element used.

¥2(0) results are in units of mn2w? Inwy?(0)/4n? while
the gauge-variant part is in “units” of mx*w® S/ ™ dw/w.

I, (Results)

I, (y*(0))=—52/3 In2+41/6 (63)
I;(gauge var)=—6M &°. (64)
I, (Results)
I,(¥*(0))=48 In2—166/9 (65)

I(gauge var)= —11/3M s+ 16M >~ 16/3M *
+3/2M p—12M 2~ 9&(V?).  (66)

I, (Results)
I,[¥*(0)]=—201n2+43/9

I(gauge var)=16M ;—4M ;+158/15M 4
+166/15M 5i+58/15M 14-22/15M ot
—20/3M g +4/3M 5+40/3M ¢
—T7/6€Xp:V p:)—43/36V %)
—12e2(u’ | V | u)—6eXV y—63(V ).

(67)

(68)

Cancellation of w? In*w Coeflicients
from n=3,2,and 1

The w? In*w coefficient from z=1, 2, and 3 arises
from the Inw part of the standard matrix elements
Mp, M¢, and Mg in the gauge-variant part of the
results above. By using the equivalences of (15) we
can express all matrix elements in terms of Mp as far
as the w?ln’w coefficient is concerned. From the
gauge-variant part of the above results, we obtain, in
“units” of mr2w? S dw/w

Iy(wP In*w)=—6Mp;

I(w? In%w)=+(64/3)M 5;

I (w? In*w) = (—46/3)M 5.
Thus, the sum 3 ,* I.(w? In’w) is zero. We will show
in the next subsection that this result has a connection

with and is consistent with the w-gauge invariance of
the w*® Inw coefficient.

(69)

Verification of Gauge Invariance of
’ w? Inw Coefficient

In the present subsection, we will apply the gauge-
invariance test outlined in assertions 1-6 of Sec. 2.
The results for each I, have been divided into a
“gauge-variant” part and a ¢?(0) part. The latter can
easily be shown to be w-gauge invariant.

Thus, to test gauge invariance we can apply the
displacement V=3 V+g; &n?= en’—2g to the matrix
elements of the gauge-variant parts of the results for
I,,1n=0,1,2 3
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For the check of the “one-g; no-V” relation of
assertion 6: Iy=—1I,, it is convenient to reduce the
-+ — and — — Dirac correction forms of I; by means
of the Dirac equation to forms involving at most the
Dirac correction #' to the large-component wave
function. We know this is possible because the results
for I, do not contain the Dirac correction to the
quantity ¢, where x=iy«(y-p/2m)e and x is the
small-component wave function. The necessary identi-
ties for this purpose are given below. The proofs are
simple. The most important element of the proofs is
the use of the Dirac equation in the form

A[v)=Cm)[iyer-p+V+(m—E)][v). (70)
We obtain, using the notation of (61)':
Mr=3{u|p:V?pluy+ie pVpi)+3{u [p:V i [uy (71)

M r=3(u|pVpi|u)+5e:X(pV pi)+ (' | p:V il w)
— 2 | V2 u)— ' | V | u)
— (Eq—E/mw?){V).

Furthermore, we obtain for the Dirac correction to
the energy!

Eq—E=—mw(p.V pi)—}eaX(pPymu?.  (73)

The polynomial in g due to each I, has the following
form, where X, for X=4, B——S, as in assertion 5
of Sec. 2 is the coefficient for a contribution to g* with
» numerator V’s (before the use of the Dirac or
Schriédinger equation) due to I,. To obtain this form,
the Dirac and Schrédinger equations have been used
for Iy and in the reduction of the matrix elements M1
and M s of Iy but not elsewhere. The “renormalization
terms” of Io and I, which cancel against each other,
are omitted. We have used (|4)=1. A common factor
of max’w® Inw is omitted.

In(g)—In=g'4 " +g (B KV )+C2(p*)
. D,.”"(u’ , u>+ En2052)+ g( an(V2>
FHM V)L pV pi)+T o | V] )
+E MV )+M 0w |u)+ N | )
FO0p)+PalpiV pi)+0n6X(p?)
4+ R0t Snm&).

(72)

(74)

In a non-S-state calculation there would also be
the forms

G'ioip:Vp;) and L ioip:iV ps)

- {(cf. Sec. 4).

The letters X, for X=4, B——S are linear com-
binations of the coefficients of the matrix elements of
the gauge-variant part of the results for I,. For

1t The corresponding expressions for non-S states are obtained
by adding certain spin-orbit matrix elements to the right-hand
side. These spin-orbit matrix elements may be obtained from the
S-state expressions by replacing the combination p;- - -#; where-
ever it appears by oijpi P



EVALUATION OF THE LAMB SHIFT. II

example,
H'=2(—11/3416)—16/3 (75)

O,°= (158166 58--22)/15. (76)

Terms arising from the matrix elements M; and M,
of I, contribute to the coefhcients L, M, N, P, and Q
using (71)-(73) and the Schrodinger equation.

It is now easy to verify that 3 ,—® X,=0 for each
X=A4, B——S and furthermore, the nature of the
cancellation agrees with all the identities of assertion
6, Sec. 2. For example, we have Cy=~—31/2 which
(one can show) is made up of —10, —10, +9/2 for
++, +—, and ——, respectively. C1=-431=+20,
+20, —9 for ++, +—, and ——. Cy=-—31/2. In
general, the cancellations of assertion 6 apply to 4+,
+—, and separately except for identities
involving J,.12

Since the w?ln?w coefficient can be expressed in
terms of the coefficients of certain gauge-variant matrix
elements, the above verification of gauge invariance is
a strong check on the accuracy of the %°Iln%w co-
efficient as previously calculated and, in particular,
on the cancellation of this coefficient between n=1, 2,
and 3. It is even true that the coefficient —6 in (64)
and, therefore, the %? In?w coefficient from I3 can be
predicted on the basis of w-gauge invariance and the
I, results. However, it is not possible to predict the
cancellation of the %?® Inw coefficient between n=1, 2,
and 3 only on the basis of w-gauge invariance and the
results of I, (or even Iy+11) as the example (75) shows.

Totals for “Non-42(0)” Part of AE

In this subsection we will add together, in matrix
element form, the gauge-variant contributions to ® Inw
from =0, 1, 2, and 3 and express the result in a
concise, manifestly gauge-invariant form. This will be
followed by an evaluation of the matrix elements for
the 1—S5 and 2—S states. Finally, we will add in the
¥2(0) results and obtain a numerical value for the
? Inw coefficient for the 1—S and 2—.5 cases.

In the following, we will use the name “non-y?*(0)”
terms for terms previously designated as gauge-variant
terms.

AE[non-y2(0)] assumes a simpler form when the
term of (72) involving (Es—E) is eliminated through

12 Since the Dirac equation was used in the reduction of I, and
of the matrix elements M and M for I, it is at first surprising
that the cancellation between Io and I, of the forms with co-
efficients M, N -+ Q and the fulfillment of the relation Jo= —%I;
for forms with coefficients C, D, and E takes place for each
“letter” separately. However, a closer analysis shows that this
was to be expected. In particular, the Dirac and Schrsdinger
forms must cancel separately in spite of the use of the Dirac
equation (and the Schrédinger normalization {u|#)=1). This
is true because the differential equation for #' determines 2’
only to within Az where A is an arbitrary number. X is determined
only by normalizing v (in addition to #). This imposes the
additional restriction

W [u)=—%(p"),

but this normalization has not been used in writing (74).
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the easily derived equivalence!
(Eex—E/mw*)(V)
= =¥ [pP—V]w)+5 |V |u)
—HV—2p:Vp)—%Vp?. (77)

On adding together the gauge-variant parts of the
results for I, =0 to 3, and using the equivalence
(77), one obtains after a lengthy but elementary
reduction involving the use of the Schridinger equation

AE[non-y2(0)]

= mr2w?

dw/w{—8/3(u' | — @V |u)

—11/15(pi— ¢V —p)+16/15(p* —¢V)
+4(*— [0,V 1p)— 42, V]—[2:V D}
(78)

This form for AE[non-¢2(0) ] is concise and obviously
gauge invariant. Note that (p;—¢*V — ;) vanishes for
S states.

By expanding the commutators in (78) and using
the equivalences of (15) we.can verify that the w® In’w
coefficient is still 3my?(0), which is a check on the
previous reduction.

Numerical Evaluation of “Non-4?(0)” Coefficient
of w? Inw for-1-S and 2-S States

The evaluation for the 1—S and 2—S§ cases of the
three nonvanishing Schrédinger matrix elements in (78)
is simple.*®

The Dirac correction wave function #' in position
space for the 1—S and 2—.5 cases, may be derived
from the explicit expression for the Dirac wave
functions® or, more easily, from the differential Eq.
(16) plus the normalization requirement!? which in the
present case (Vo=—1/r) is the same as

(W |uy=—1/(8n?) for mn—.S state. (79)
The following expressions for # are obtained:
For the 1—S state:
{us'|r)=au,—% lnru, (80)
where
u;=Ce™ (81)
¢=§—1Iny—%1In2 (82)
Iny=0.577——. (83)
For the 2—S state:
(s’ |ry=au,~—3% Inru,+bCy_sre™24-cCy_sr?e2  (84)
#;=Cos(1—1/2)e (85)
o=35+5(1=1n); b=—7%; c=+37 (80)

1BH. A. Bethe and E. E. Salpeter, Quantum Mechanics of One
and Electron Systems (Academic Press, Inc.,, New York, 1957),
p. 69.
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Actually, a knowledge of the constant b and ¢ in (84)
is not required for the evaluation of the Dirac matrix
element in (78). The explicit evaluation of the Dirac
matrix element is

(| —¢'V|w)

=~ (/")) [eo{ln(@)+1-Iny}+a:], (87)
where g, and ¢, are defined by the expansion
{u'|r)=ao Inr-+a1+higher order. (88)

The following numerical values were obtained for
the matrix elements of (78), dropping lower-order
terms proportional to w* and Inw.™

(1) (W |—¢V)=2In2—3% ~
—7/64 -

) (P*—¢'V)=12 -
=9/8 -

(89)

N’-‘NTN«—N»—
Ly n

3) ([puVI—[p:V D= ——§ In2

8
4 (p*—[p,V]pi)=—81n2-2
—11/16

On substituting (89) into (78), we obtain, in units
of mr*uw? Inw:

AE(non2(0); w? Inw)=16 In24-172/15 1-§ (90)
AE(mon-2(0); w? Inw)=3-+3/40 2—-S. (91)

Totals for 42(0) Part

From (63), (65), (67), and (28) we obtain, in units
of mu? Inwn?,

s PO)32 47
AELFO0))= E 1 (O’]:"Z?[? lnz—;]. (@)

Final Results

From (90)-(92) and (30), using also the normalization

¥*(0)=8r%/n’,

4 Dr. G. Erickson has kindly informed me that the following
generic expressions exist for the values of the matrix elements
(1)-(4) of formula (89) for the general -3 state:

Wl—gV)

=2/n(In(2/m)+-1+3+ - +1/ (-1 —1/n+9/ (@) 1],
#*—aV)

=8/n¥[1+1/(2n%)],
(8, V) — (4:,V))

=—8/n[In(2/n)+1+4+-- -1/ (n—1)+1/2n)+1/(6n*)— %]

and, finally,
(B — (V)= {(ps,V) — (9, V))—2/n".
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we obtain!®

AE(1—S)
= ma?wi[4 Infw-+Inw[112/3 1n2—21/5]]  (93)

AE(2—S5)
=mrtw] 3 Infw+Inw(8/3 Inw+67/60)]. (94)

4. NON-S-STATE CALCULATION OF LAMB SHIFT

The formal setup for non-S states is very similar to
that of S states. In fact, only the wave functions are
changed. The ‘“‘scaling” goes through as before; the
division into large-large, large-small, and small-small
parts by means of the projection operators A== is still
possible and one can still use the generalized Schrédinger
approximation. The % expansion, which is independent
of the wave functions and the scaling, is unchanged.

There is one obvious formal difference, however,
caused by the change of the wave functions from §
state to non-S state. This is the appearance of additional
“spin-orbit” terms, involving operators which are
linear combinations of the Pauli spin matrices e; or
their tensor equivalents o= (1/2¢)[viyy;] together
with two component Schrddinger wave functions.'®
We call these terms “spin-orbit” terms since in every
case that will occur in the present calculation, the
corresponding operators can be expressed in terms of
the scalar operator ¢-L. For example,

u). (95)

In spite of this additional feature, the non-S-state
calculation turns out to be considerably simpler than
the S state ome. This is because of the improved
behavior of the non-S-state Schrédinger wave functions
at small r and high p, in particular the vanishing of
¥2(0). As a result, many terms that appear in the
S-state case, namely all those proportional to ¥2(0),
do not appear in the non-S-state case. In particular,
#?lnw, w! and wln%w terms are absent and
the ‘“nonstar” (»3) category of w®lnw terms is
eliminated.

i(uloypV pi|uy= ““<u

——aL
r dr

16 According to Erickson’s generic formulas of the previous
footnote for the non-y2(0) matrix elements of formula (29), the
result for the #—.5 state can be written in the form

AE(n—S)=4mn*w3/ (n3) Inw{Inw+4[In 2/n)+1+%- - -+1/n]
+16/3 In2—~601/180— 75/ (45n%) }.

Except for the last two terms, proportional to 1/#% and 1/x5,
this expression has been confirmed by an independent calculation
of Erickson and Yennie, still in progress (private communication
from Dr. Erickson). Their method employs a new formal treatment
of the self-energy, in which, in distinction to the free-propagator
expansion, the bound electron propagator is left in closed form
until the last stages of the calculation (see also Dr. Erickson’s
dissertation, reference in footnote 1).

¢ In the S-state case, the trace operation eliminated such terms..
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The principal results for the non-S-state case are
summarized in the five assertions listed below.

1. The “main result” of I is still true,

2. There are no w? Inw, w!, or w? In%w coefficients for
non-S states.

3. The non-S-state contribution to w?lnw can be
obtained by adding “spin-orbit” terms to the “gauge-
variant” part of the I, Iy, I, and I; results given in
(64), (66), (68), and (29).

4. The spin-orbit terms, like the nonspin-orbit
terms, are ‘‘star’” terms (v=3). Furthermore, they
arise only for =0, 1, and 2 (not n=3), and for =2,
they occur only in the generalized Schrisdinger approxi-
mation with a quadratic in  numerator (D=2).

5. The final results for the »?inw contribution for
non-$ states can be obtained by adding the spin-orbit
term

AE(s—0; »* Inw) = mn’u® Inw(—Yi{o,;0:4°V )  (96)
to the previous non-{2(0) results in the form (78).

The proofs of these assertions are straightforward
and are omitted.

Evaluation of Non-4?(0) Matrix Elements for 2P,
and General Non-S State

Note that the Dirac matrix element of (78) and the
Schrodinger matrix element ($>—¢?V') vanish for non-S
states. Also, we can remove the dash “—” in (78),
and replace /™ dw/w by lnw.

The evaluation of the spin-orbit matrix element (96)
and the three nonvanishing matrix elements of (78) is
simple. The following results are obtained.

L. P=(p:¢*Vp:)

= — 2 L(L1)[1/7d/dr (rRur) Too
P=—% for 2P,
2. Q=i0ipi®V ;)
__pun-nen-11
L(L+1) (98)
Q=-—% for 2P,
3. VIp: V= —1/ - (99)

& PV Ip=—2AV[psVIp=—(1/r). (100)

Here,"

1 32— L(L+1)
(Yry=-
20 (LA LD EAHDLE—)

=1/24 for 2P, (101)

17H. A. Bethe and E. E. Salpeter, reference in footnote 13,
p. 17

7N
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To derive (100), we used the identity
(rH(9/3r)=—5(s+1)(r?) (102)

for all s such that the right-hand side exists. This
follows from ((H,*])=0. In (97) R.; refers to the
radial wave function of the #, L state normalized so
that 41rf]RNL[2r2dr= 1.

Final Results for 2P, State and
AE(2S;—-2Py)

On substituting (97)-(101) into (78) and (96), we
obtain

AE(2P;; ' Inw)=mn""* Inw 103/360.  (103)
Or, from (94),
AE(25—2Py; w*In*w and % lnw)
= mrw (3 In%w+Inw(8/3 In2+1—61/360)].  (104)

5. NEW THEORETICAL VALUES FOR
THE LAMB SHIFT®

To obtain the absolute value of the 25—2P; shift
due to the new orders calculated here, we insert the
normalization factor of —a/4x® omitted from our
starting expression for AE and use the evaluation:

2

#O)=| [ @ptulp)2= 8] =01 w05
=8n?/(n%) for S states.
Then we obtain from (104) the result
AE(25—2Py)= — Lw[3/4 In*w+Inw(4 In2+1
+27/40—103/240)], (106)

where L is Z* times the Lamb constant:
L=27%*/(3x)Ry=Z*(135.6 Mc).

To this we must add a small contribution to the lnw
term due to vacuum polarization, easily derivable as
the effect of the Dirac modification of the large com-
ponent wave function on the expectation value of the
Uehling potential®®:

AE(vac. pol.)= — Lw Inw(— 1/10)¢?(0)/x%.  (107)
Adding this to (106), we obtain
E(28;—2P;, including vac. pol.)
= — Lw(3/4 Infw+1nw(4 In2+1+7/48)).  (108)

18 The principal results of this section were reported previously
(reference in footnote 2). However, the theoretical values for D
and He* given in Table I of that article did not incorporate the
latest values of the nuclear finite size correction. This oversight
is corrected in Table I of this section,

8 A, E. Uehling, Phys. Rev. 48, 55 (1935). Our result follows
immediately from expressions given in the papers of E. Wichmann
and N. M. Kroll, Phys. Rev. 101, 843 (1956) or N. M. Kroll and
F. Pollock, Phys. Rev. 86, 876 (1952).
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TasBLE I. Theoretical and experimental values in Mc of
the Lamb shift in H, D, and He*.

H D He*

Experimental 1057.7740.10 1059.00+0.10 14040.2-+4.5
Theoretical 1057.70:0.15 1059.08::0.16 14047.24-3.0

The corresponding numerical results in megacycles
are —0.25 for H or D and —9.5 for He*. These addi-
tions reduce markedly the disagreement between
theory and experiment.?® To obtain the new theoretical
values for the Lamb shift, we shall make use of the
previous theoretical values as tabulated by Petermann®
with, however, more recent values for the finite size
corrections in D and He*. A newer value for the
nuclear finite size correction for Het is given by
Lipworth and Novick.?? For D we use the value of the
finite size correction given by VYennie, Lévy, and
Ravenhall.®® Adding in the new contributions calculated
here, we obtain the theoretical values listed in Table I,
which are compared with experimental values for H,*
D and He"? Theoretical errors are copied from
Petermann’s article.

It is of interest to list also the contribution to the
fine structure separation 2P;—2P; which is due, of
course, to the spin-orbit matrix element (96). We
obtain?®

AE(2P3—2Py)=—Lw hhw(—%). (109)

In megacycles, this is only (—)0.01 for Z=1 and is

2 It should be mentioned that the uncomputed fourth- and

sixth-order radiative corrections of order a2ZL and o?L, respec-
tively, should contain no logarithmic factors and are expected to
be numerically negligible. Fourth-order radiative corrections to
the Lamb shift were evaluated in lowest order oL by J. Weneser,
R. Bersohn, and N. M. Kroll, Phys. Rev. 91, 1257 (1953), except
for the fourth-order vacuum polarization contribution which was
evaluated by M. Baranger, F. J. Dyson, and E. E. Salpeter,
Phys. Rev. 88, 680 (1952). The method used by J. Weneser,
R. Bersohn, and N. M. Kroll was subsequently justified by R. L.
Mills and N. M. Kroll, Phys. Rev. 98, 1489 (1955). The absence
of logarithmic factors in (aZ) in 4th- and 6th-order radiative
corrections at the present order was pointed out to the author
by N. M. Kroll. For fourth-order corrections this is asserted
without a detailed proof in the last section of the cited work of
Mills and Kroll. The absence of aL Inw terms in the lowest-order
fourth-order radiative corrections suggests that logarithmic
factors are not present in the lowest order sixth-order radiative
corrections, of order o?L.

1 A. Petermann, “Atomic energy level shifts in hydrogen-like
atoms,” Fortschr. Physik 6, 507 (1958). !

2 E, Lipworth and R. Novick, Phys. Rev. 108, 1434 (1957).

#D. R. Yennie, M. M. Levy, and D. G. Ravenhall, Revs.
Modern Phys. 29, 144 (1957). The change of 4+0.12 Mcis due to
the finite size of the proton. The charge form factor of the neutron
is assumed to vanish.

24 S, Triebwasser, E. Dayhoff, and W. Lamb, Phys. Rev. 89,
98 (1953).

2 E. Dayhoff, S. Triebwasser, and W. Lamb, Phys. Rev. 89,
106 (1953).

#In the author’s previously published note (reference in
footnote 2) the left-hand side of this equation is erroneously
written as AE(2P;—2Py). We are grateful to Professor R. E.
Cohen for pointing out the ambiguity in sign of this notation.

Our present notation is consistent with the fact that the 27,
level lies above the 2P; level. ]
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thus much smaller than the experimental error of 0.20
Mc for the separation in deuterium,?

CONCLUDING REMARKS

As outlined in the preceding work, we have used
the free-propagator expansion and the 2 expansion to
carry out detailed calculations of nonanalytic orders
of the Lamb shift through the order aw®Inw. For the
previously calculated orders we have obtained results
in agreement with previous values, and for the new
orders of ouwfln’w and awflnw we have obtained
reasonable results that to the present experimental
and theoretical accuracy remove the discrepancy
between the theoretical and experimental values of
the Lamb shift.

These detailed calculations were based on the more
general mathematical analysis of I. This analysis, it
should be stressed, was incomplete in two important
respects: neither the convergence of the free-propagator
expansion nor that of the % expansion was rigorously
established. These interesting questions of convergence
are more difficult than those considered here and must
be regarded as open. However, the successful use of
the two expansions in rederiving the coefficients of
previously calculated nonanalytic orders justifies an
optimistic attitude with regard to the validity of the
methods used here for the calculation of the new
orders of aw? In*w and ow?® Inw.

In connection with the convergence of the free-
propagator expansion there are a few comments of a
qualitative nature that can be made which may help
to clarify the situation. For the purposes of this
discussion, the convergence of the % expansion will
be assumed.

In the first place, it is not hard to see that for the
general bound state the free-propagator expansion does
not converge to (AE) in the strict sense. This is because
each term I, of the free propagator expansion is real
while AE as a whole, for all states except the ground
state, contains an imaginary part proportional to the
transition rate for decay to lower states.2” Closely
connected with this difficulty is the fact that for each
term of the free-propagator expansion one can im-
mediately rotate the path of the ko integration to the
Imaginary axis while this is not possible for AE as a
whole except for the 1—S state. One can get around
this difficulty of the imaginary part in a formal way

" The imaginary part of AE, which can be evaluated in closed
form, has been treated relativistically and in detail by L. Kaagjarv
and S. T. Ma, Nuovo cimento 8, 432 (1958). This imaginary
part is incorporated into the algebraic structure of the self-energy
operator through the presence of small negative imaginary parts
in the 22 of the photon propagator and in the mass m of the
electron in the expression for the bound electron propagator, in
accordance with the usual Feynman prescription. As a con-
sequence of this prescription, the energies of positive and negative
energy intermediate states in the sum-over-states representation
of the bound electron propagator have small negative and positive
imaginary parts, respectively, in agreement with the prescription
of Kaagjarv and Ma. )
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by regarding the free-propagator expansion as an
expansion of the real part of AE alone, but in doing
this we are covering up mathematical difficulties which
may affect the convergence of the real part of AE as well.

To examine the question of the convergence of the
free-propagator expansion, we must look at the
remainder after # terms R, of the expansion in finite
form and see whether it approaches zero as n — =,
R, has the same form as I, except that the last free
propagator is replaced by a bound propagator. It is
not difficult to show by considering the pole at 22=0
that one can recover the imaginary part of AE from R,
alone as must be the case. This shows, however, that,
for states other than the ground state, the imaginary
part of R, certainly does not approach zero, and
therefore, the free propagator-expansion does not
converge to AE, as already noted. Since the same
iterated structures are involved in the real part of R,
as in the imaginary part, these considerations also cast
doubt on the convergence of the expansion for the real
part of AE, especially for states other than the ground
state.

In spite of the above remarks prejudicial to the
convergence of the free-propagator expansion in the
strict sense, the situation in practice is much brighter.
It is a fact that the sum of the “spurious” lowest-order
terms for the remainder after Io-+I; was obtained
correctly as outlined in I (Sec. 2) by a formal algebraic
sum over z from n=2 to infinity. Furthermore, in
F-Y the coefficient of the order aw® 'was obtained
correctly, in their formalism, by a formal sum technique.
In this case the order is the same as that of the lowest
order of the imaginary part of AE for the general
bound state. It is thus plausible that by taking formal
algebraic sums for a given order in w of interest one
can ‘“‘transcend” the free-propagator expansion and
avoid convergence difficulties associated with the
expansion.
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Finally, we remark that the problem of the con-
vergence of the free propagator expansion has much
less force for the orders nonanalytic in w that have
been calculated in the present paper since a given
nonanalytic order is contained in only a finite number
terms of the expansion. In this connection it is satisfying
that the imaginary part of AE, as one can infer from
expressions given by Kaagjarv and Ma,¥ is an analytic
function of w for small w. Thus, the imaginary part of
AE does not contribute to the discontinuity A(AE) of
AE on the cut along the negative w axis. We can then
regard 23 ,ImJ,=> ,Al, as an expansion of
A(AE) and it is now reasonable to estimate the order
of the remainder after # terms in this expansion by
replacing the bound propagator of the exact expression
for the remainder by a free propagator. In this way,
according to theorem 4 of Sec. 3 of I, one obtains an
estimate of order for the remainder that can be made
as high as desired by picking » sufficiently large. Thus,
even if one adopts a pessimistic view about the con-
vergence of the free propagator expansion for AE, it is
plausible that the expansion 23, Im,[, is valid for
A(AE), if only in the sense of an asymptotic expansion
in orders of w.
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In close analogy to the “vierbein” technique of representing world vectors as linear combinations of four
fixed vectors, we have constructed from six linearly independent bivectors a (complete) set, or basis, of ten
tensors of rank 4 that possess all the algebraic properties of the empty-space Riemann-Christoffel tensor
(i.e., Weyl's tensor). Any actual Weyl tensor must be a linear combination of these ten; the expansion coeffi-
cients with respect to a given basis are uniquely determined. We have examined Petrov’s classification
scheme in terms of this formalism and have developed a further division into subclasses. Finally, we shall
present in this paper, as an application of our technique, the derivation of plane-fronted waves.

I. INTRODUCTION

ETROV'? was the first to classify the Riemann-
Christoffel tensors of empty space (which are nu-
merically identical with Weyl’s tensor) according to
their local algebraic properties. Pirani? used Petrov’s
classification to define, again locally, “pure radiation.”
In this paper, we shall present a different approach to
the problem of classifying empty-space geometries. Our
approach is based on the construction of an algebraic
basis for Weyl’s tensors. We begin with a vierbein for-
malism, which differs from the usual construction only
in that we replace the timelike and one spacelike unit
vector by two null vectors. From the four world vectors,
we construct six bivectors (i.e., antisymmetric tensors
of rank 2), which are pairwise each others’ duals.
Finally, from the bivectors we can construct ten linearly
independent tensors of rank 4, which have all the alge-
braic properties of Weyl’s tensor, i.e., they are anti-
symmetric in each of two index pairs, symmetric with
respect to the interchange of the two pairs, cyclically
symmetric with respect to any triplet of indices, and all
contractions vanish. These ten combinations, quadratic
in the bivectors, form a basis; thus, any Weyl’s tensor
may be expressed as a (unique) linear combination of
the chosen ten basis tensors. Petrov’s classification may
be formulated in terms of the expansion coefficients.
Moreover, by studying the field of the coefficients in the
neighborhood of a world point, we shall extend the
algebraic classification scheme to include differential
properties as well. Our results include, but go beyond,
so-called propagation studies. Work with a ‘‘vierbein”
formalism is, of course, not new. In our approach, the
chosen vectors are, however, adapted to the preferred
directions of the various “special” types of Weyl’s
tensors, including Pirani’s radiation types. In the latter
types, one of our null vectors plays the role of the
propagation vector. ’
The concluding section of this paper deals specifically

* This research was supported in part by a contract with the
Air Research and Development Command, U. S. Air Force.

1 A. Z. Petrov, Sci. Not. Kazan State Univ. 114, 55 (1954).

2F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

with plane?® and plane-fronted* waves, which were origi-
nally studied by Bondi, Pirani, and Robinson.

II. CLASSIFICATION

Consider four independent vectors &, Xxu, $us Pur &ns
and x, being null vectors satisfying &x*=1, £.8=x,x"
=0, and ¢, and p, being spacelike, orthogonal to £, and
xu and satisfying ¢,0*=0, {,.{#=pup*= — 1. The signature
of the metric tensor is (4---).

We form all six antisymmetric pairs of the vierbein
vectors and introduce the notation

Qap= 1o,
Pog=x1el1,
Lap={1aps1,

Qag™=— £(app),
PaB*=X[aPﬁ],
Log*=E{1axs-

(2.1)

The square bracket indicates antisymmetrization
and the * indicates the dual defined

Bapr*=3(—g)teapys B
The dual has the property
Blag)**=—Bag). (2.2)

The Q, P, L and the duals are called bivectors. On
taking all quadratic products of the bivectors, as for
example Q.s0,*, we construct four-index tensors with
the algebraic properties of the Riemann tensor. An
example of this would be QasQv*+Qas*Qrs, it is anti-
symmetric in «,8 and v,6 and symmetric with respect
to interchange of the pairs of3, ¥8. (The cyclic symmetry
is automatically satisfied by the next condition.) If we
now restrict the choice of these four-index tensors by
demanding that they have a vanishing “Ricci” tensor
(the “Ricci” tensor is defined by summing the four-
index tensor over the first and last indices), this leaves
just the following 10 tensors, which form a basis for
algebraically possible Riemann tensors in empty space:

Rlagys=QapQvi— Qus*0r*, (2.32)
RH&BV&:PaﬂPW—PaB*PW*, (23b)
$H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. Roy. Soc.

(London) A251, 519 (1959).
¢ 1. Robinson, report to the Royaumont Conference.
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Rnlaﬂ'ya = (QaﬁL'ﬁ""‘LaﬁQ'y&)

—(Qas*Ls*+Lag*Qy™), (2.3c)
RY apys= (LapPrs+PapL)
- (Pﬁﬁ*L73*+Laﬁ*P76*), (Z.Sd)
RvﬂﬂW“: (Qoﬂp‘yﬁ“l"PaﬂQ'y&)
—~ (Qus P+ Pog*0rs")
+2(LagLys—Lap*Lys®).  (2.3¢)

‘The remaining five basic tensors are just the duals of
the first five, the dual being defined as

Rapv* = (— )}/ 2exsuuRag". (2.4)

From these tensors we can construct examples of the
Petrov types as follows:

Petrov type I:
Rapys=a1RY apystas (R agys+ R agys)

FB1RY ors* +Ba(Rlaprs*+RMagqys*).  (2.52)
Petrov type II:
Rapys=0R1,5+aRY apys+BR agrs*.  (2.5b)
Petrov type III:
RaﬁytS:U'RIHaﬁ‘ya. (Z.SC)

An important subclass is type II null defined by
(2.6)

The o’s and B’s are invariants of the Riemann tensor
and o is nonzero, but otherwise arbitrary.

Pirani calls the Petrov types II and IIT the radiation
cases.

Rapp=0R opys.

III. DIFFERENTIAL PROPERTIES

By differentiating the 10 possible Riemann tensors
we can, after a lengthy calculation, obtain 10 relations,
consisting of

RIaﬁ'ys;p = 2R10378a;x + 2-RI€¢5’)‘5*fF

+RIHa378€p - Rlnaﬂ’yb*bg, (3. L':L)
R apysiu=— ZRIIaﬂvaan— 2RY agys™ f
+RY pgnstutRY opps*dy,  (3.1b)
RIII«:MS;::: ZRIaﬂ'yae“"*“ ZRIagya*dﬁ’RnIaﬁyéan
+R1nak7§*f v RY agrsCa— RV apra™by,  (3.10)
RY apos; b= ZRHaﬁvé'?M_ 2R" 4pya*by—~ R aprsa,
—RY ops* fut R apysbut+RV apys*ds,  (3.1d)
Rvaﬁ'ré:p =3 (Rmaﬁ'yben+ RIIImﬁ'r&*dp
+RY apyica— RV aps*by),  (3.1e)
and their duals.
The vector coefficients are defined as
Q=" G=Xwul"
bi=§£u8", €= X’y
a=Eup®y  fu=Cuup’.
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It is possible to give a subclassification® of the
“Riemann” tensors by stating that the different vectors
@y -+, fu are zero or nonzero. That this is fruitful will
be demonstrated in Sec. V.

IV. BIANCHI IDENTITIES

Up to this point, we have been considering a tensor
with the symmetries of the Riemann tensor. A necessary
condition, but by no means sufficient condition, that
this tensor be the Riemann tensor in a Riemann space
is that it satisfies the Bianchi identities,

Raﬂ‘r&;u'l‘Raﬁu'r;&'i‘Raﬂﬁu;7:O~ (4-1)

By summing over a and g and remembering that
Rs,=0, we obtain

Raﬂ'yﬁ;a=0. (4.2)

By applying this equation to Petrov type I degenerate,
types II and III, Sachs® and others have shown that
the £ field is tangent to a null geodesic congruence and
satisfies the nonshearing condition,

Ea;ﬁ($¢§ﬁ+ Eﬁ' a)= (E“H‘)?’ (4‘3)
which was first derived by Robinson* for type I null

solutions (and for null solutions of Maxwell’s empty-
space equations). ’

V. PLANE AND PLANE-FRONTED WAVES

For the remainder of the paper we will restrict
ourselves to Petrov type II null, and hence our Riemann
tensor may be written as Rasy=0cR sy, Eq. (2.6),
with the differential properties given by Eq. (3.1a). We
now restrict ourselves further and require that ¢,=5,=0.
The differential properties of the Riemann tensor now
become

Rﬂﬂ‘va;u = (10g<7) ,pRa.816+ 2Rag~(aau+ 2Raﬂ1c$*fu
or
Ragys;n=Rapr(loge,,+2a,) +2Regs* fue  (5.1)

The first theorem we wish to prove is that a space
whose Riemann tensor has the foregoing properties,
possesses a covariantly constant null vector field.

It is easily verified from (3.2) that

(5.2

Euv=E—{b—puty
and
Ky = = Xalyr— f,‘dy— p,,ey. (5.3)

We define a new vector A\, by N,=¢é,, where ¢ is a
scalar to be determined. The covariant derivative of

Ay s
Aiy=0 yb. k=0 bt oba =5 (¢, +9a))

from Eq. (5.2) and remembering b,=c,=0.

(5.4)

5 This subclassification is similar to that proposed by J. Schell,
who arrived at it by a study of the generators of the holonomy

group.
8 R. Sachs (private communication and preprints).
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We now must show that a, can be expressed as the
gradient of a scalar.
Consider the expression

Ga;p— 0g;0= (£,aX");8— (&:8X"); e
= (fw, af™ EV;ﬂa)Xv'*'EV;aX”; 8~ &58X"5a
=E.R% apX” — Gattpt G50 (5.5)

The last two terms arise from (5.2) and (5.3). Direct
calculation of £.R*,.s from Eq. (2.3a) shows it to be
zero. Hence,

(5.6)

By choosing ¢ in (5.4) as ¢=¢7¥, we obtain A, =0,
proving the theorem.

We will now find the most general line element which
satisfies Eq. (5.1). The method used is based on an
elegant paper by Walker.”

From a theorem of Eisenhart,® one can put the
metric of any four-dimensional space-time that possesses
a covariantly constant vector field into the form

ds?= goo(dx)>+2go,du’dx"+ g .dxdx?
+2dx%dxt  (r,s=2,3), (5.7)

the g’s being independent of #!. In addition, the
Eisenhart theorem states A*==4§,*. For the remainder of
the paper 7, s, ¢ - -+ will go from 2 to 3.

It is easy to see from (5.7) and M=4§* that \,=3,9,
and hence £,=¢%,°%. The Riemann tensor we are con-
sidering then takes the form

Rogys= 0 (8% $10° (4551 — 0°1app18(0081),  (5.8)

with the consequence that the only nonvanishing
components are those with two indices equal to zero.
By direct calculation using the metric (5.7) we can
calculate the 2323 component of the Riemann tensor
with the result

u5—080=0 and a=y,.

Ryotn= an=0- (59)

R0 is the Riemann tensor in the two-dimensional
space defined by the metric d3=g,dx"dx*. Since the
two-dimensional space is flat we can take the metric
as grs=—0rs (The minus sign is due to our choice of
the signature of the metric.)

From Ry,.;=0, Walker shows that there exists a
coordinate transformation which causes the g, to
vanish. .

With these two facts our metric (5.7) can then be
written

ds?= goo(da®)2— 3, dx"dx*+2dx"dx?, (5.10)
and
g°=0, g'=—go,

gOa — gla = 0.

T8 = §78 01=1
g &= ey
The only nonvanishing components of the affine

7 A. G. Walker, Proc. London Math. Soc. Ser. 2, V52 (1951).
8 L. Eisenhart, Ann. Math. 39, 316 (1938).
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connection are

r ) 1 L 1 L
{OO]=_‘2‘800.7: {00]=7800.0, "Os]=7800.8- (5.12)
The components of the Ricci tensor then are
Rys=R1,=Ro,=Ru=0, Roc=3%g00,rr
The empty-space field equations are
goo,»=0. (5.13)

Though it is not obvious, this solution (5.10) and
(5.13) satisfies Eq. (5.1) identically and hence solves our
problem completely. It is instructive to see how this is
done. .

Any metric tensor can be written in terms of the
‘“‘vierbein” vectors as

™= EXu b Culv Pups- (5- 14)

If the metric is (5.10), the vierbein vectors may be
chosen as

£=e8%, x.=eY[6%(g00/2)+0"%],
.= C0s06%,+sinf%,,
pu= — Sinf%,-+cosBo3,.

(5.15)

8%, and 83, are unit vectors along the x? and #® axis and
at this point 4 is an arbitrary angle. The vectors g, and
fu computed from their definition, Eq. (3.2), are

fu=0.u-

On using (5.15) in (5.8) we have the only independent
nonvanishing components of the Riemann tensor

Rozeo= —oe?¥ 0520, Rozz0=oce¥ cos26,
Rozzo= —ae€?¥ sin26.

@G =Y 4 (5.16)

(5.17)
On calculating the same components, this time from

the metric tensor, we obtain

Ro220=g00,22/2, Ros30=go0,33/2,

(5.18)
R0230=goo.23/2-

Therefore,

800,20= — 20¢%¥ 0526, goo,23= —20€*¥ sin29  (5.19)

and

§o0,226 w goo,236 ¥
o= or o=— . (5.20)
2 cos26 2 sin26
From (5.20) we obtain
) £00,22u
(logo) u=—2¢ .+ +2(tan26)8,. (5.21)
800,22
From (5.19) we also obtain
800,23/ §o0,22= tan26. (5.22)
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On substituting (5.16), (5.18), and (5.21) into (5.1)
and with the aid of (5.22), we have (5.1) identically
satisfied. Though this completes our proof, a discussion
of (5.22) sheds light on the nature of some particular
solutions.

If tanf=constant=¢, our field equations are gqo,2
~+ go0,33=0 and goo,25= cgoo,22. The solution to this is

goo=4 (x9) (x,? “x32+cx2x3).

There exists a simple coordinate transformation
which eliminates the cross term. We can call this
solution a plane-polarized wave, with 8 as the angle of
polarization,

If tanf= f(x°), our general solution is

Zo0= A (x°) (ng'— x32) +B (x“}xgxa.

The angle of polarization changes with x° but is inde-
pendent of the spatial coordinates,
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The most general solution has the angle of polariza-
tion as a function of x, %3, and xs. _

The first two solutions, whose properties are discussed
in great detail in footnote 3, are referred to as plane
waves, while the last given in footnote 4 is called a
plane-fronted wave,
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The classifications of Einstein spaces by Schell and Petrov are combined and certain nonlocal results
are obtained. In particular, we show that an Einstein space cannot be type I with a rank four Riemann tensor
in a four-dimensional region. On using the notion of a perfect or imperfect infinitesimal-holonomy group,
we establish the conditions under which an Einstein space possesses a two-, four-, or six-parameter group.
We find that two- and four-parameter groups are associated with special cases of type II null and type III,

respectively.

1. INTRODUCTION

ECENTLY, Schell! has presented a classification of
Riemannian spaces in terms of the bivector
generators of the infinitesimal-holonomy group (ihg).
He has shown that this approach is closely related to an
earlier classification due to Petrov.? For empty Einstein
spaces this relationship is also revealed by the work of
Newman® who described the Petrov classes in terms of
certain basis tensors of rank four with the symmetries
of the curvature tensor.

In this paper we restrict our attention to empty
Einstein spaces, R,,=0. We study the three Petrov
classes using additional information given by the
differential properties of the curvature tensor, that is,
the ihg. We shall write the Petrov classes in terms of
their canonical bivectors. These bivectors always
form part of a basis for the ihg and, indeed, as we shall

17, Schell (preprint).

2 A. Z. Petrov, Sci. Not. Kazan State. Univ. 114, 55 (1954).

3E. Newman (preprint).

see, always generate a subgroup of it. For the most
general spaces this group by itself does not give much
information. However, for type II and type III spaces
the classification according to the ihg allows a further
subdivision which depends on the dimension of this
group. These types are of particular interest since
Pirani* has defined pure gravitational radiation in
terms of them.

Many of the ideas and results presented in this paper
appear in Newman’s work.? However, his language and
notation are not suited to a discussion of the holonomy
group. The motivation for this paper is derived from
the classification by Schell and, therefore, the results
are stated with respect to the ihg and give information
about the structure of this group in empty Einstein
space.

In the next section we shall discuss the holonomy
group briefly. Following this, we examine the individual
Petrov types.

4F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).
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Fic. 1. The vector
2#' obtained by parallel
transfer of o# around the
curve C will in general
differ from ® by a rigid
rotation.

2. HOLONOMY GROUPs

In a Riemannian space V, with signature -2,
consider a closed path C starting and ending at the
point P (Fig. 1). If an arbitrary vector # is parallel
transferred around C, then upon return to P it will, in
general, differ from its original value. This operation of
parallel transference around C induces a linear trans-
formation, T, of the tangent space at PS:

v'E=T A v,

Since parallel transfer preserves all inner products, 7,
will be an element of the rotation group at P defined by

T ugasT = g

The linear transformations generated by the set of all
such paths through P forms a subgroup of the rotation
group at P, and is called the holonomy group. If we
restrict ourselves to regions in which the connection is
analytic, and if we further restrict ourselves to curves
which are homotopic to zero, then we obtain the
infinitesimal-holonomy group (ihg). Since the groups
at P and P’ are isomorphic, there is, in fact, only one
ihg for the domain. Nijenhuis” has shown that the ihg
is a Lie group, and that its generators, La,’, span the
» domain of the curvature temsor, Rj;»*, and its
covariant derivatives. Latin letters, A..., run from 1
to 7, where 7 is the dimension of the group space. If we
lower » with the metric tensor, we obtain the generating
bivectors Ly,,. The curvature tensor and its derivatives
can be expressed uniguely in terms of these,

Vi VRoone =A%, . Lags LA, (1)

where 4K - - is symmetric in A and K. It may be seen
from (1) that the covariant derivatives of the bivectors

8J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin,
1954), p. 361.

¢ Greek indices label the coordinates and run from 1 to 4.

7 A. Nijenhuis, Koninkl. Ned. Akad. Wetenschap. Proc. Ser. A,
56, 233, 241 (1953).
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themselves are expressible as a linear combination of
the basis bivectors,

VpLApc = GKAyLKpn

@

with suitable coefficients, @¥,,.

If the rank of the matrix AA¥, which appears in the
curvature tensor itself, is » then the ihg is called perfect.
Conversely, if the rank is less than 7 then the ihg is
called imperfect. Since the ihg is a property of a region
rather than a point, it is still called perfect even if
there are isolated points at which its rank is less than 7.

The classification of Riemannian spaces devised by
Schell depends on the number of parameters needed to
describe the ithg and its degree of imperfectness. In
Table I we present a comparison of his classification
with that of Petrov.

3. CANONICAL FORMS FOR THE
RIEMANN TENSOR

In his classification Schell has shown that the
generating bivectors may be conveniently chosen to be
simple bivectors constructed out of an orthogonal
tetrad. Similarly, Petrov made use of such a tetrad to
obtain his canonical forms for the Riemann tensor. In
this section we shall show that the basis bivector
generators of Schell are identical to the canonical
bivectors of Petrov.

We introduce a null tetrad?® e,

Clu=Xy, €=y

4= ?m

where p and g are null vectors, and x and y are spacelike.
The orthogonality properties of the tetrad may be
expressed as

&)

3=y,

ea,,Eb“:gab, (4)
where
1
To=gr=|_ | | | )
1
Clearly, the Z.; are the anholonomic components of

the metric tensor, and they will be used to raise and
lower tetrad indices. The metric tensor iteself is given by

Lw=E" ¥E 0y (6)

Tasre I. Comparison of the Petrov classification
with that of Schell.

Number of Bivector rank of
group parameters curvature tensor Petrov type
2 2 II null
4 4 it
6 2 II nuil
4 III»
6 LII

& According to Schell's work, type I may also be rank 4. We show in
Sec. 4 that such a solution of the field equations does not exist.

8 The Latin indices a, b, ¢ from the early part of the alphabet
run from 1 to 4 and label the different tetrad vectors.
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From the tetrad (3) we construct the following six
linearly independent simple bivectors:

Lipe= [Px]a Lope= [Py]x
Lsptr: [Pg]: L4PU= [xy]’ (7)
Leo=[gx], Lse=[gy].
In the preceding we have used the shorthand notations
Labl=aisbe1=3%(a,be—asb,).

One can easily show that the bivectors L, and L,
generate the group of null rotations about p:

pﬂ’:pm

q'= qutax,+by,—3(a*+ bz)?m
%' = 2, — apy,

V' =Yu— Py

Similarly, Ls and Le generate the null rotations about
g. Ls and L, generate the Lorentz transformations in
the (pg) plane and the rigid rotations in the (xy) plane,
respectively. A Lorentz transformation in the (pg)
plane only changes the scale of p and ¢:

pn’ =apy, Qu; =g,

In addition to the subgroup generated by L, and L.,
we also have the four-parameter subgroup which
preserves the direction of p, {LiL.L;L:}. From the
canonical forms given by Petrov, the Riemann tensor
for empty Einstein spaces may be written as follows:

Type I:

Ryvpo= (arta2)[LaLsy+LeLe~+LsLs— LiLy ]
+ (Ch - 012) ELILI —LyLo+LsLs— LeLej
+ (B1+8:)[LeLsyy—LaLey—~2LiLy ]

+Br—B)[LaLy—LiLle]; (8)
Type 1I:

Ryvpo=20[LisLsy+LeaLoy+LsLs— LeL4]
+28{LeLsy—LaLe—2LiLy ]
+G'EL1L1-' Lsz] i (9)

Ruvpe=20[LaLy— LLy ). (10)

In the foregoing expressions the coordinate indices
have been suppressed on the right-hand sides.

Since we are interested in properties of four-dimen-
sional regions rather than local properties at a point,
we shall restrict ourselves to neighborhoods in which
the Petrov type is the same at every point. Any
compact region may always be subdivided into a
finite number of regions with the foregoing property,
as well as a finite set of submanifolds of lower dimension
on which the Petrov class is also constant. Con-
sequently, this is not a serious restriction.

Further information about the Riemann tensor may
be obtained by examining the properties of the ihg.
In order to do so, we must construct the rotation coeffi-
cients and show their relationship to the coefficients

Type III:
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@X,, of (2). The rotation coefficients vz, are defined by
the covariant derivatives of the tetrad vectors®:

(1

They are skew symmetric in (e,b) because of the
orthogonality relations (4). In terms of these, the
matrix €¥,, is given by the following:

Yabe™ a’'€u; 0o

Yaau  Y21p Vel V2w
Yiza Vi VYazp Y4
K \_ | Y13 Yesu . . Yalp Y42
(€*a)= Yosu Y3l Yoap  Vau |’ (12)
Yise Yaw Y4k Y2l
Y23 Y13 Vi Y43
where

Yabp™ Y b= €a Clp;ue
From the Ricci identity,
Vo Va€a:=3Rn’€ar,

the anholonomic components of the curvature tensor
may be expressed as

(13)

Ravea= =29 av1e/da1— 2Y ealeY ¥ b1 0+ 2V abeY *1edl.

where
V...‘la,= V-n ;gea’u-

4. INFINITESIMAL HOLONOMY GROUP
FOR PETROV TYPES

Type 1

According to the classification by the ihg, type I
always possesses a six-parameter group. From the
canonical form (8), it is evident that the curvature
tensor is in general of rank six and, therefore, has a
perfect ihg. When it is of rank four, the axes may always
be chosen so that

a1+a2=131+82= 0

We shall now show that such a space cannot exist in a
finite four-dimensional region. With «; and By replaced
by « and B, the curvature tensor becomes

'R“’P" = Za[LILl - L2L2+L5L5—' LaLg]
+28 [L( 1Lay— L(sLa)]. (14)

Ii we substitute (14) into the Bianchi identities for
an Einstein space,

Run?;o=2R\p;: =0, (15)

and use (12), we obtain the following restrictions on
the rotation coefficients:

V144 Y244 Y133= 7233=0,

Y2417 Y142, Y2317 Y1se, (16}

Y1417 Y242, Y1317 Y232,

9 L. P. Eisenbart, Riemannian Geomeiry (Princeton University
Press, Princeton, New Jersey, 1949), p. 96. (Ina private discussion,
Newman pointed out the efficacy of using the rotation coefficients
to study the properties of the Riemann tensor.) )
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On using these equations in (13), we find that
Rzun— R4z42= 0,
R4142 = 0,
whereas, from the canonical form (14), we have

Ryn— R4242= %Ol,
Rygpe=—4

Hence a=8=0, and we have the following theorem:

Theorem 1. There does not exist an emply Einstein
space whose Riemann tensor is type I rank four in a
fimite four-dimensional region. This shows that a type I
curvature tensor always generates a perfect six-param-
eter ihg, except for the trivial case where the curvature
tensor is zero and the space is flat.

Type I metrics represent the most general class of
Einstein spaces and the Bianchi identities will not lead
to algebraic resistrictions on the rotation coefficients,
in general. Rather, they lead to equations defining the
derivatives of the parameters, a1, az, 81, 82. However, in
the special degenerate case when ai—ap=g1=8=0,
there are a sufficient number of conditions imposed on
the rotation coefficients to allow the metric to be
diagonalized.’®

Type II

The curvature tensor for type 1I nonnull is rank six
and hence generates a six-parameter perfect ihg. From
the Bianchi identities we obtain the following relations
for the rotation coefficients:

Y144=Y2u4= 0,
Y142= — Y241, (17)
Y1417 Y242,

The other equations are restrictions on the derivatives
of o, 8, and o.
The first two of Eqs. (17) tell us that

Puisp”="Yasapu.
Since a scale change in p and g,
' =exp{ ¢} Pu

a.'=exp{— o},

leaves the orthogonahty relations for the tetrad (4)
invariant and only changes the Riemann tensor by

o' =exp{—2¢}0,
we may choose ¢ so that

(18)

Yau' = oup"Fyae=0;
# will then be geodesic,
Duiy r=0, (19)

It may be easily shown from (18) and (19) that p
satisfies Robinson’s equation,

(P W np = % (?”:#)2'

1 F. Newman and L. Tamborino (private communication).
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Sachs has previously shown that this equation holds
for type II null and type III metrics.t
For type II null a=B8=0, and the curvature tensor is
given by
Rouwp= 0 (LinuL1yp~ LangLavp). (20)

From Egs. (2) and (12) we see that the first covariant
derivative of the Riemann tensor will introduce new
bivectors, unless

Yiia™ (21}

Furthermore, it must bring in both L; and Ly, since
otherwise we must have

Y42e= 0.

Yita Yaz|

~Ys2u Vi

for all y. This implies (21). From (12) we also see that
the covariant derivatives of L and Ly will bring in
the remaining two bivectors, Ls and Lg, unless (21)
is satisfied. Consequently, the ihg associated with a
type II null curvature tensor is either two-parameter
perfect [when (21) is satisfied] or six-parameter
imperfect.

In addition to (17) the Bianchi identities for (20)
give the following conditions:

2v124="Y1a2, (22)
(a*p*);x=0. (23)

Equation (23) is the conservation law found earlier by

Ehlers and Sachs.”? It is only true when we choose the

noninvariant parameter ¢ so that p is geodesic (19).
When (21) holds, we have

Pusv™= Pus.
From the Ricci identity, we have

P o0 = Py =3 R p,=0

It follows that a,is a gradient field ¢ », and so exp( —@)pu
is covariant constant. Hence we may choose p to be
covariant constant itself,

Pu:r'-“— 0. (25)

Theorem 2. The necessary and sufficient condition
for an empty Einsiein space to have a two-parameler
perfect ihg is that there exist ¢ covariant constant null
vector. In that cose lhe curvature temsor is mecessarily
type IT null.

The necessity has been shown previously and the
sufficiency proof is trivial since (25) 1mphes (20} and
).

The metric which gives rise to {25) is well known as
the plane fronted wave solution®%:#;

ds=dat-+dy*+2dpdg+ Hap,
H,=0, H,,otHy,=0.

(24

1R, K. Sachs (%mpnnt)
2 7, Ehlers and R. K. Sachs, Z. Physik 155, 498 {1939).
18 H, W. Brinkman, Math. Ann. 94, 119 (19
(136%)) Robinson and A. Trautman, Phys Rev Lctters 4, 431
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Type III

From (10) it is evident that the curvature tensor
for a type III metric is always rank four. As for type II
null, (2) and (12) show that the ihg will be six param-
etric unless Eq. (21) is satisfied. In addition to the
relations (17), the Bianchi identities yield

Y1215= 27324+7243,
Y122= 2Y134~ Y143,

26
Y128= 2231~ 2132, (26)

Y1247 2y140.

Furthermore, these identities also give the conservation
law already found by Sachs for type III:

(op*);u=0. 27

It isinteresting to note that in this case (27) is independ-
ent of the choice of scale for $ and &, whereas for type I1
null the conservation law requires that $ be geodesic.
Of course, since the relations (17) are true here, we
may always choose p to be geodesic for type III as well.

In the previous section we showed that if the ihg is
two-parameter perfect, there always exists a covariant
constant null vector. We shall now prove the following
theorem:

Theorem 3. I'n an empty Einstein space possessing a
tour-parameler ihg, there exisis a null vector satisfving

wiv=KPuPry (283)
&, 2P0, (28b)

and the space is type II1. Conversely, whenever there
exists a null vector satisfying (28) the thg is four-parameter
perfect.

When the scalar « in (28) is zero throughout a finite
four-dimensional region, then p is covariant constant
and theorem 2 applies. To prove the first part of the
theorem, we recall that the ihg is four-parameter only
when the space is type III and Eq. (21) holds. As in
the discussion of type II, (21) implies that

?g; == ?pav = ')’34??;;- (24!)

If we change the scale of  as in (18), the rotation
coefficients transform and we have in particular,

29

Obviously, we cannot hope to make s for all g,
since then a,’ would be zero and the space would
possess a covariant constant null vector. Consequently,
it would be type II null. We shall look at the integra-
bility conditions for the existence of a scalar satisfying

(5,4 thy -+ -=1,2,4).

Yata' =Y3sa+ /0.

/s="Y43s

On forming the second derivatives of ¢, we obtain the
following equations:

D/ (st} =DruY L8} =Y a3L/2)y
18R, K. Sachs, Z. Physik 157, 462 (1960).

(30)
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since (21) implies
73[3t1=74[:£]=0~

On substituting from (30), we obtain the integrability
conditions,

YVaslersl ™ YasuY “rse1 = 0.
From (13) and (21), this reduces to
Rs45:=0.

For a type III space with curvature tensor given by
(10), this condition is satisfied identically. Con-
sequently, we may always satisfy (30), and so may
choose the scalar ¢ so that a,=xp,. Hence, (28a) is
satisfied.

The second part of the theorem is proved by observing

that
Vo Vipu= puprVak= 3R, P,. (31)

As Sachs'® has shown, and as may be shown by using (7)
as a basis for the curvature tensor, (31) implies that
the space is type III when (28b) is satisfied and typeIL
null otherwise. In the latter case we may always choose
the scale of p such that it is covariant constant. Triv-
ially, (28) implies (21).

We can establish a relationship between the scalars
x of (28) and the o of the curvature tensor. On substitut-
ing (10) into (31), we obtain

K0P =10 PLIN.

o=4k
gt =gapr=0.

Equation (28) tells us that p itself is a gradient, rather
than just being surface orthogonal,

Hence,

(32)

From this fact, one can show that the only allowable
transformation which preserves the form of (28) is

?#'z exp{¢(X) }p“;

«'=exp{—o(x)} (x-+dd/dx),
o’'=exp{—¢(x)}o.

giving

From these equations, we shall construct the most
general type III metric with a perfect ihg in a sub-
sequent paper.

5. CONCLUSION

In this paper we have used the Petrov canonical
forms to study the infinitesimal-holonomy groups for
empty Einstein spaces. By restricting ourselves to
regions in which the Petrov class is the same at every

-point, we have been able to obtain the following results:

(a) A type I metric is always rank six and, therefore,
must have a six-parameter perfect ihg. It should be
noted that we do not claim that the Riemann tensor
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cannot be type I rank four on a submanifold of lower
dimension.

(b) The ihg of a space is always six parameter except
when there exist a null vector satisfying

Duir= Dy

(c) When g, is a gradient field, § may be chosen to
be covariant constant. The space is type II null and
the ihg is two-parameter perfect.

AND R. P. KERR

(d) When g, is not a gradient field, it may be chosen
to be proportional to p,. The space is then type III
and the ihg is four-parameter perfect.

(e) Every space with an imperfect ihg is either type
II null or type III. Therefore, from the discussion
following (7) we have the theorem:

Theorem 4. When the ihg is imperfect it is always six
parameter, and the bivectors spanning the *,~domain of
R -\, generate a nontrivial subgroup of the ihg.
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1. INTRODUCTION
N a previous paper! we combined the Petrov? and
holonomy group classification? in a study of Einstein
spaces. In particular we found that the infinitesimal-
holonomy group (ihg) of a region is six parametric,
unless the space contains a null vector p, satisfying

Duiv= Putly.

When g, is gradient forming,

€]

ay= (Dll'y

the scale of » may be changed, p,/=e"%p,, so that the
null vector is covariant constant. The space is then
type II-null. As in T we introduce the null tetrad

Cpu =My, €=y
64R=PI-7

zﬂb)

Cop= My,
eaneb“=
with
1
zab=zab= ' . ’ 1 .
1
By a canonical choice of the tetrad, the type II-null
Riemann tensor may be written as
Rinpo=40{ prutn protor — pumn piotar}- 2
If a, is not a gradient, the right-hand side of Eq. (1)
may still be simplified so that

Duv=kPups.

1J. N. Goldberg and R. P. Kerr, J. Math. Phys, 2, 327 (1961),
preceding paj er This paper will be referred to as I and equations
in it will be enoted by & 2), for example,

2 A. Z, Petrov Sci. Not Kazan State Univ. 114, 55 (1954).

3 ]. F. Schell, J. Math. Phys. 2, 202 (1961).

The space is then type III, four-parameter perfect,
and the canonical form for the Riemann tensor is

Ry po=40{ Prutm i 0s) +mpui) proita)

— Pt Do) — P1ugPistal } - 3)
We summarize these results by
k=0, type II null,
two-parameter perfect,
Lusy=KPupy 4)
K, p\?ﬁ};éo, type III,

four-parameter perfect.

In this paper we shall derive the metric for the most
general space admitting a null vector satisfying Eq. (4).
To do so we shall use the surface forming properties of
the basis tetrad. Type II null will be treated as a
special case of the type ITI metric. The surface forming
properties are most easily studied by use of the rotation
coefficients

Vo

Yabe™ €a"'€bu;v€" = ~"Y bac-

2. CONSTRUCTION OF A COORDINATE SYSTEM

From Eq. (4) we see that p is a gradient field,
Pun=0, =V, ®)

Since # is orthogonal to p,, m, and n,, ¥* is a solution
of the outer problem,

Viapt=yt =44 it =0. (6)

Also, from Eq. (4) we have
Y1ab="%p= —8%,06%k, (7.2)
which, in conjunction with Eqgs. (1.22) and (1.26) gives
Y124=0. (7.b)
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cannot be type I rank four on a submanifold of lower
dimension.

(b) The ihg of a space is always six parameter except
when there exist a null vector satisfying
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(c) When g, is a gradient field, § may be chosen to
be covariant constant. The space is type II null and
the ihg is two-parameter perfect.
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and the ihg is four-parameter perfect.

(e) Every space with an imperfect ihg is either type
II null or type III. Therefore, from the discussion
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If a, is not a gradient, the right-hand side of Eq. (1)
may still be simplified so that
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1J. N. Goldberg and R. P. Kerr, J. Math. Phys, 2, 327 (1961),
preceding paj er This paper will be referred to as I and equations
in it will be enoted by & 2), for example,
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We summarize these results by
k=0, type II null,
two-parameter perfect,
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In this paper we shall derive the metric for the most
general space admitting a null vector satisfying Eq. (4).
To do so we shall use the surface forming properties of
the basis tetrad. Type II null will be treated as a
special case of the type ITI metric. The surface forming
properties are most easily studied by use of the rotation
coefficients
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2. CONSTRUCTION OF A COORDINATE SYSTEM

From Eq. (4) we see that p is a gradient field,
Pun=0, =V, ®)

Since # is orthogonal to p,, m, and n,, ¥* is a solution
of the outer problem,

Viapt=yt =44 it =0. (6)

Also, from Eq. (4) we have
Y1ab="%p= —8%,06%k, (7.2)
which, in conjunction with Eqgs. (1.22) and (1.26) gives
Y124=0. (7.b)
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We shall now examine the integrability conditions
for the existence of a gradient field satisfying

179 F =29 F=0. (8)

The first derived system of these equations consists
of Eq. (8) and

(p°0.1P35—n0epPds)F 2 (Qn®)3.F=0.  (9)

From Eq. (7) we see that the Lie derivative of #» with
respect to p is just

L pn®=n® ,pP — p% ;0P = yasp™.

Consequently, the first derived system is Eq. (8) itself
and so these equations are complete. From Schouten*
we see that there are two functionally independent
solutions, one of which must be y* We shall take y! as
being the other, so that the most general solution is
(Y ¢Y). Hence, we have

YLupt =yt =0.

Similarly, we can show that there is another scalar
function independent of ¢* and which is a solution of
the outer problem

Y upt=y* m*=0. (1)

We shall use these three functions as coordinates. As
our fourth coordinate we choose a solution of

Yupr=1

This equation has four independent solutions.

It may be easily seen that these four functions are
functionally independent at every point of the region.
If ! .m* were zero, then by Egs. (10) and (6) ¥* and ¢*
would not be functionally independent, contrary to our
assumption. A similar argument holds for y? ,#*. Hence,
from the preceeding equations, we have

det (et o) =det(e#) det(¥?,)
= (! am*) (Y2 un¥) #Z0.

The functional independence of the y¥* follows im-
mediately. In the coordinate system

def
(%%%“) = x = 6“d‘pa;

(10)

(12)

the tetrad vectors have the components
pu=(0,0,0,1),
3= (g1,92,1,94),

where m, and #s are not zero. Since

My = (m1)0707m4)’ (13)

Hp= (0,”2,0,"4),

Lur=myutm,1+ 2Py,
the line element takes the form
ds?= guda’+gady*+2gndxdu
+ 2gudydu—+-2dudv+-gadu?.  (14)

47. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954),
pp. 78-83.
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From Eq. (4) we see that

{ur,3) =Tut= —«5,%,4, (15)
since g*#=243*. From this it follows that
Bws=0, (ur)#(44), (16)
Zaa,3= 2k,
Also, in I we showed that
kapr =k mr =0, 1

and hence « itself is independent of », since p*=2ds*.
Consequently, g« may be written as

Ba4= w+2'wc,

w,3=K.3=O.

(18)

This shows that v only occurs in one element of the
metric tensor and even there it does so linearly.

We shall now prove that there exists a coordinate
transformation of the type

a'=g" (x7y7u)) vl=‘v7
y'=5"(x,y,u), w=u,
which preserves the form of the metric tensor, but gives
g'11=g'22= 1.

fweuser, s, t, 0= 1,'2, and if we denote the affine
connection and _the Riemann tensor in the (x,y) space
by a bar, T',:", B.stu, then we have

T.r=g"*{st,u}+g3{st,3} =T,/,
Tar=g"{3t,u}+g{3t,3}=0.
Consequently,
R.#=20,T g+ 200, T’ = Ryui*=0,

irom Egs. (2), (3), and (14). Clearly, this is the neces-
sary and sufficient condition for the existence of a
coordinate transformation giving the line element
the form

ds?=dx*+dy*+ 2cedxdu+208dydu
+2dvdu+ (w+2«v)du?.  (19)

It should be noted that while p is invariant under the
transformation, and consequently (16) through (18)
remain satisfied, the vectors m and » no longer have
the same form as in Eq. (13).

Looking at the field equations now, we find that

Ry=%(B1—a,2) 2+x:1=0, (20a)
Ras=3%(a,2—8,1) 11x,2=0. (20b)

We introduce a function p satisfying
a2—B1=p,, (21)

and then Eq. (20b) gives

pa= —2K,2.
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Hence we may integrate this equation and express K
as a function of p,

k=—3p2 (22)

A function f(x,%) should have been added to the right-
hand side of (24). However, it can always be absorbed
into p, without affecting Eq. (23), which does not define
p completely. The solution of Eq. (21) is

a=P+¢,lr
B=0,2

where p and ¢ are functions of %, ¥, and #%, but not v.
From Eq. (20a) we see that p is a surface harmonic,

p.a1+p,22=0. (23)

It may be easily seen that if we transform x* by the
following

V=v+¢(x,y,m); =z (u*%3), (24)
then the metric becomes
ds*=dx*+dy*+ 2dudv+2pdxdu+ (w—p,w)du?.  (25)

The only remaining nonzero components of the affine
connection are

Tst=13p,9 Tul=p 4—3pp,1—3gus,1,
Ti?=—3p2 Tid=—3gu,,

Tid=p4, I'i’=3p.s,

Pif=3gu,1, Tub=—3pp2+3g4s2
Iif=—13p1, Tat=3p1,

Tif=3gas,4t3pgss1+30,1(0*— g1s) — pp 4.

On using these values, one finds that the Einstein
equations reduce to Ry4 and Ry4, and that these give

pautp,2=0,
w11+ 20=2p 11— 2pp 11— (p,1)%+ (p 2)*

This is as far as we have been able to reduce the
metric, in general.

The coordinate system used is not unique. In fact,
there are three classes of transformations which preserve
the form (25) of the metric (we shall use a dot to
denote differentiation with respect to #):

(26)

(a) Translations:
&' =x+a(u),
¥ =y+b(u),
(b) Rotations:

v =v—dx—by,

w=u;

#'=x cosf+y sind, o'=v+®(x,y,u),

¥y =y cosf—x sind, o' =u,

where 8=0(%) and & is a function of p and 6. This &
corresponds to that in Eq. (24);
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(c) Scale transformations:
2=x, &'=v+229,
y,=y) u' =®(u).

We shall refer to these in the following discussion.

3. DISCUSSION

From the construction of the metric, Eq. (4) is
satisfied, and hence we know the space is either type II
null or type III. From Egs. (22) and (4), it will be
type II null only if

p.1=—p,22=p,120=0, (27)

that is, if p is linear in x and y:
p=a(w)x+b(u)y+c(u).

It is faitly easy to show that when p has this form, it
may be transformed away completely by a scale
transformation and a rotation. One then obtains
the plane fronted wave solution of Brinkman® and
Robinson®:

ds?= da?+-dy*+-2dudv+-wdu?

where w is a surface harmonic.
With the metric in this form k=0 and p, is convariant
constant. Therefore, it satisfies the Killing equation,

Ep; T Evm=0- (28)

In general, p is the only Killing vector although in
special examples there may be many more.”

We shall now investigate under what conditions a
type III perfect metric can possess a Killing vector.
It will be shown that any Killing vector present in
such a space must belong to one of two distinct classes
and that the space can never possess more than two
independent motions. When one of these is present the
u dependence may be transformed away. The other is
a rotation in the (xy) plane.

When u,»7%4, Eq. (28) may be integrated directly
to give the following contravariant components:

= al+bya
£2=a’—br,
= 441

where ¢* and b are functions of #. The remaining
Killing equations are

(29)

Es =—§l—p .p—pdt (30a)

3 g=—£—bp (30b)
53,3= —at (30C)
£ 4= —pf—gud* —3gut" (30d)

8§ H. W. Brinkman, Math. Ann. 94, 119 (1925).
(136[6)Robinson and A. Trautman, Phys. Rev. Letters 4, 431

7H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. Roy. Soc.
(London) A251 519 (1959).
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By considering the integrability relations for these
equations, we obtain the following conditions:

(31a)
(32b)

p.auft=—2b—dps,
p = —a*(1+42p,1).
The integrability conditions on these give
d%,12=0.

When p,1; is zero we may easily show from (31) that
a* is zero. Consequently, we always have

d@4=0, (32)

that is, a*is a true constant.

First of all we observe that when a* and & are both
zero, @' and @® must also be zero. Otherwise, from
Eq. (31) p is linear in x and y and the metric can be
reduced to the type II plane-fronted wave solution.
Furthermore, under these conditions Egs. (30) give

E=8w), 28=p.8

The second of these again implies that the metric is
type II, or £&=0. Consequently, there does not exist a
Killing vector with both a* and b zero.

We shall now consider the case where the space
possesses a motion £;* with a*#0. By Eq. (32) we
may choose a*=1. It may be shown that by a translation
followed by a rotation we may always transform al, a2,
and b to zero. In the new coordinate system we have

fo=8n=0, &up=L
From Eq. (31) p has the form
p=f(w)+g ().
The function f(%) may be transformed away by
v'=v+xf (u), u#3,

and then we have p 4=0. It follows from Egs. (30a)-
(30c) that £ is a function of % alone. Equation (30d)
then gives

!
xH = xl-‘,

w=a(xy)+(u)p,1— 20 (u), (33)
where & (u)=£. Under the transformation
' =v—®(u), (34)

o reduces to @ alone, and £ to zero. Finally, we see
that the metric is independent of #, and the Killing
vector, as is to be expected, is simply

By £ 8, gua=0. (35)

We shall now examine the case where the space
possesses a motion £ with

E"(z) : a4=0, b5%0.

As for £y, we find that a tramslation will eliminate
both @' and ¢ The Killing vector then has the form

Eo=by, Bup=—bx, E@»=0.

The Killing equations may then be integrated in a
straightforward manner. If we transform the resultant
metric so that £ is in canonical form,

B = (36)
_ then the metric may be written as follows:
ds?=dr*+exp{u}r?d®+ 2dudv+2A4 (u)dudd
+LIn(r/ro) (v—3r")+B(u) Jdw?, (37)

where 7o, A, and B are functions of u.

We have investigated all type III perfect metrics
which possess a Killing vector and have seen that this
must be either £ or £). We shall now examine the
case where the space admits two or more motions.
First of all, we observe that under these conditions the
space must possess a Killing vector for which a* is
zero. This follows from Eq. (32) and the fact that the
motions from a linear space. Consequently, the metric
can always be transformed to the form of Eq. (37). It
is then a simple matter to show from Eq. (28) that the
space does not possess a second Killing vector unless
4 and B have the form

A(uw)=aexp{3u}, Bu)=b, 7¢,,=0 37

where ¢ and b are independent of «. The second Killing
vector is of the first type considered and may be ex-
pressed in this coordinate system as

Eay T 84—360%. (38)

Furthermore, the space does not admit a third Killing
vector.

It is easy to see that the two motions cannot have
the canonical form of Egs. (35) and (36) simultaneously,
nor, for that matter, can any two linearly independent
combinations. This would require the existence of a
scalar function, y? satisfying

Bt u=0, Eayt,=1,

and the first derived system of equations for these are
incompatible, since they include

(—EmE e ot Eo o W= —380¥?,=0.

This shows that we cannot transform the metric to
a form where it is a function of two coordinates alone.

Invariants. There are no scalar invariants of the
second differential order for type III metrics, since the
function ¢ of (3) is not completely determined. How-
ever, there are four invariantly determined vectors for
the curvature tensor, namely,

Du=0pu, Gu=0""gu (39)

If we use a bar &, to denote this tetrad rather than e,

My, Ny,

" then the rotation coefficients and their tetrad derivatives

form a complete set of scalar invariants for the metric:

Vabc,

We shall not compute the invariants for the general

Yabe/dy
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metric but shall restrict ourselves to that of Eq. (37).
For this, we have

r=(Y211)™ (40a)
v=—7%/8+7(3Vs11—V32) (40b)

ro(u)=r exp{3—r~'(4¥322+273u)  (40c)

A (u) exp{—3u}=2r(3¥312— 2¥321) (40d)
B(u)= —4r¥311/5+F (Yave) (40e)

where & is a rational function of ¥3,,(r,s=1,2) and ¥s;.
From these equations we see that there are always
three functional independent scalar invariants unless
there is a second Killing vector, and consequently

KERR AND J.
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Eq. (37) is satisfied. The coordinates r and v are
always invariants, as are the functions (%) and B(w).
Since « of Eq. (4) is just —In(r/ry), it is an invariant
and so p, must be also. From Eq. (5) we see that «,
i.e., ¥4, is defined up to an additive constant

w' =u+tc. (41)

Consequently, 4 (%) is also unique up to a multiplicative

constant,
A'(u)=exp{—c/2}A ().

When there are two Killing vectors present then
from Egs. (37) and (40) we see that @, b, and r, are
all scalar invariants of the metric and therefore cannot
be transformed away.
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The projection of the target wave function on the total wave function of a scattered particle interacting
with the target system is used to define an absolute phase shift including any multiples of =. With this
definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons
scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of x. One
can further show that at least one x of this phase shift is not connected with the existence of a bound state of

the H™ ion.

I. INTRODUCTION

N the scattering of a particle from a local central
potential, Levinson! has proved an interesting and
important theorem ; as it applies to attractive potentials,
it says that the number of nodes in the zero-energy
radial wave function is equal to the number of bound
states which the potential will allow. (For the purposes
of this discussion, we confine ourselves to s-wave
scattering.) The zero-energy phase shift ¢ is related to
the number of nodes by

n=0,1,2, ---. (1.1)

(For an attractive potential, we use the usual conven-
tion of choosing the phase shift as positive.)

It should be noted that in this one-body problem the
phase shift at any energy has an absolute significance.

d=mnm,

! Norman Levinson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd 25, No. 9 (1949). The reason these theorems are restricted
to zero impacting energy is because for nonzero energy the
scattered wave function is always sinusoidal at infinity and,
therefore, contains an infinite number of nodes. In the zero-
energy case, the scattered wave function degenerates into a
straight line, and the number of nodes becomes finite. There are
various conditions which the potential must have in order for
Levinson’s proof to be valid. The most important is that it
cannot have more than a Coulomblike singularity at the origin.

It is the absolute phase difference between the radial
wave function and the spherical Bessel function measured
from the origin to where the phase difference becomes
constant. This phase difference is the absolute phase
shift. It is sufficient for our purposes to define the
absolute phase of a function (in radians) at a point
as the ratio of the length from the previous node to the
abscissa of the point divided by the length between the
surrounding nodes, plus the number of nodes up to
and including the previous node (but excluding the
origin) all times =. (See Fig. 1.)

There has been some interest in extending Levinson’s
theorem to the case of a particle scattered from targets
consisting of more than one particle. In these cases,
however, there is as far as we know no universally
accepted definition of an absolute phase shift. Clearly,
such a definition is a necessary step in extending
Levinson’s theorem to the compound target case. An
obvious approach to such a definition is to associate a
one-particle radial wave function with the many-body
scattering process; then one can use the above procedure
to determine its absolute phase. We shall argue that

ws(ro)=r0 f B*(1,2, - N)Wu(05 1,2, - - N)dret  (1.2)
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consisting of more than one particle. In these cases,
however, there is as far as we know no universally
accepted definition of an absolute phase shift. Clearly,
such a definition is a necessary step in extending
Levinson’s theorem to the compound target case. An
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PHASE SHIFT IN ELASTIC SCATTERING

u.k ('o)

o
»
I
(2]
A
-

F16. 1. Absolute phase of a function wx(rg). In the diagram,
phase of u; at b is (14(4B)/(AC))x. Note that bumps in the
function ux(re) do not contribute integral multiples of = to phase
unless they cause % to cross the axis.

provides a consistent definition of such an equivalent
one-particle radial wave function.? (u, should always
be understood as 7, times the radial wave function.
dry™t signifies integration over all coordinates but 7,.)
Indeed, the above expression, which is the projection
on the target wave function ®, of the exact wave
function of the target system plus incoming particle
¥, has tacitly been assumed by some people. However,
alternate means of defining the phase shift have been
used. For instance, in the scattering of neutrons from
nuclei, it is customary to compute the phase shift from
formulas relating it to the logarithmic derivative at a
point where the interaction is assumed to be negligible.
In so doing, one has renounced altogether defining a
phase shift except modulo . There is some justification
in this approach on the ground that when the incoming
particle is interacting strongly with the target system,
the wave function is highly nonseparable; then the
idea of a phase shift loses all meaning. However, no
matter how complicated the wave function, it is clear
that (1.2) does tell how much on the average the
incoming particle is being attracted or repelled by the
target. What we are really asking is whether this
definition of the phase shift, which traces the buildup
of the phase shift as a function of 7, will not alter
(correctly) calculated results.

However, that the definition (1.2) cannot change
results modulo  is abundantly clear. For in order that
a phase shift be defined in a given process, ¥; must
have the asymptotic form

lim ¥,=sin(kro+6)®o+ X2 ki(re)®;(1,- - -,N),
e =0

?We assume that ¥; is real. We have always found that one
can so choose ¥ providing one is dealing with a given partial
wave (such that ¥ is a state of good total angular momentum)
below the threshold for any inelastic process.
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where the &; for j#0 refer to other states (including
perhaps dissociated states) of the target system (for
which the %; do not vanish). All these states have in
common that they are orthogonal to the original state of
the target. Thus, substituting the above into (1.2), we
see that

8=0"+Im.

In Sec. IT we shall discuss the Hartree-Fock approxi-
mation for scattering, in particular Swan’s? conjecture
of the extension of Levinson’s theorem, which is
intimately connected with it. A different method of
determining phase shifts is also analyzed in that
section. Section IIT contains a rigorous yet trival
demonstration that the triplet, zero-energy phase
shift in the scattering of electrons from atomic hydrogen
is a nonzero multiple of . One can show that this
behavior need have nothing to do with the existence of
triplet bound state of the composite system which is
the H~ ion.

II. ALTERNATE METHODS OF DETERMINING THE
MANY-PARTICLE PHASE SHIFT AND
SWAN’S CONJECTURE

A particularly important case of scattering from a
compound target is the scattering of electrons from
atoms. One of the most established methods of treating
this problem is the exchange or Hartree-Fock approxi-
mation.* According to this approximation, one makes
an Ansatz for the total wave function of an antisym-
metrized product of an undetermined function #%(ro)
of the scattered particle times the ground state wave
function of the atom ®,:

70‘1’k= @{ﬁk(rn)%(l,Z,- . ,N)} (21)

@ is the antisymmetrizer; ®, is considered already
antisymmetrized. The variational principle (H is the
Hamiltonian of the total system and E the total

energy),

af‘I’k* (H— E)‘I’de—_-’— 0, (22)

is used to derive a one-dimensional integro-differential
equation for #, from which the phase shift is determined
precisely as in the one-body problem. Here then, one
has a prescription for calculating an absolutely defined
phase shift, which, however, has the disadvantage of
being tied to an approximate Ansatz for the wave
function. Within this approximation, Swan' has
conjunctured an extension of Levinson’s theorem which
says, concerning the zero-energy phase shift §,

6= (n+m)m, (2.3)

3P. Swan, Proc. Roy. Soc. (London) A228, 10 (1955). This
important paper is unfortunately not clear. In particular, the
conjecture Is put in the form of a theorem, but it is not clear to
what extent his subsequent arguments are intended to be a
proof of the theorem.

4P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
See also E. Feenberg, Phys. Rev. 40, 40 (1932); 42, 17 (1932).
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where # is, as above, the number of composite bound
states that the potential will allow, and m is the number
of states from which the particle is excluded by the
Pauli principle. An example of the meaning of m is the
following. Consider the s-wave scattering of a particle
from an atom whose (Hartree-Fock) wave function
has filled 1s and 2s shells, Both these shells are excluded
so that the zero-energy wave function would be expected
to have at least two nodes according to Swan’s theorem.
If, in addition, the negative ion would have a bound
state in which the additional particle were in a 3s state,
then an additional node would be induced in the zero-
energy scattered wave function.

We wish to investigate the connection of the function
i, with 4 of (1.2), assuming we replace the exact ¥
by the exchange approximate (2.1).

From the considerations of Sec. I we know that i
and u; will give rise to the same phase shift modulo .
What we want to know is how these functions compare
for smaller values of 7y. Because of the antisymmetry
of (2.1), one can add to % any amount of any orbitals
which have the same angular and spin dependence
(assumed to be s orbitals in the case of s-wave
scattering) without changing ¥;. For instance, in
the example discussed above, one can add any
amount of 1s or 2s to % without affecting ¥, and in
general a #i;= Uy can always be found which is ortho-
gonal to all the orbitals of the Hartree-Fock wave
function. The virtue of (1.2) as it applies to the Hartree-
Fock approximation is that it automatically generates
suck @ Up. It is to such a U, that Swan’s theorem is
meant to apply.® From the theory of linear second-order
equations (in particular the radial hydrogen equations),
one would expect the scattered “orbital” in the example
to have at least one more node that #,,, which would
mean that it would have at least two nodes. [See
example connected with Eq. (3.5a).] The existence of
bound states would then, in the usual way, induce
additional nodes, and this is the heuristic basis of
Swan’s conjecture. (The argument is not rigorous
because #; does not satisfy an ordinary differential
equation, but rather an integro-differential equation.)
The only part of Swan’s assertion which can be rig-
orously salvaged from the theorem of Sec. III is that
the zero-energy s-wave phase shift of an electron
scattered from an atom with a filled 1s shell must
approach at least .

There arises here as in the one-body problem an
ambiguity in the over-all sign of the phase shift. In
the one-body problem, this ambiguity is settled, where
the radial function u(r) is known, by choosing that
sign for w(r) such that #,/(0)>0. In our case, this

& The Hartree-Fock orbitals of nonclosed shell atoms are not in
general orthogonal. Nevertheless one can always orthonormalize
them without changing the Slater determinant. We shall always
think of the determinantal Hartree-Fock wave function whose
orbitals are orthonormalized, The fact that # could be made
orthogonal to the Hartree-Fock orbitals was realized by Feenberg
(footnote 4),
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means choosing that sign for ¥, such that the same
condition for #(ro) applies.® In both cases, the phase
shift is the difference between the phase of u(ro) and
that of -sinkry. This assures that an attractive
potential produces a positive phase shift.

It may be thought at this point that we are getting
very much out of this procedure for determining the
absolute phase shift. However, one should bear in
mind that we are using considerably more information
contained in the total wave function than its asymptotic
form. In particular, by using the projection of the total
wave function on the ground state, we are including
some aspects of its behavior right down to the origin.

In some applications, the phase shift has been
determined by the condition that it approach zero
as the energy becomes infinite, and that it vary con-
tinuously as the energy varies. We should like to point
out that the first condition is not necessarily true and
that the second can be misleading. An obvious counter
example of the first condition is a system with hard-core
potentials. Here, the region in which the wave function
differs from its asymptotic form does not vanish as
the energy is increased indefinitely, and the phase shift
does not approach zero. Concerning the second condi-
tion, it must be emphasized that although the phase
shift is a continuous function of the energy, its slope
need not be continuous and will in fact be discontinuous
whenever the threshold for some competing process is
reached. Since in any numerical calculation one can
only find phase shifts for some finite set of &’s, it is
possible that a discontinuity in slope of 8 as a function
of £ may appear as a discontinuity in § itself. In some
variational calculations where the variational expression
may have several relative minima as a function of &,
such a behavior might cause the wrong branch to be
followed.

III. PROOF THAT THE ZERO-ENERGY TRIPLET
PHASE SHIFT IN THE SCATTERING OF
ELECTRONS FROM HYDROGEN IS
A NONZERO MULTIPLE OF =

Let ¥_(ro,x;) be the exact wave function of the
zero-energy triplet e—H system. Then,

\I’_(fo,i'l) = """I’_(l'l,l'o). (3. 1)

Now expand
W_(1o,11) =220 ¥u(t0) on(r1), (3.2)

where ¢, are the states of the hydrogen atom. According
to our definition, the absolute phase shift is determined
from

Yolro) = f oo (1Y _(ro, 1), (3.3)

¢ This prescription only applies where the wave function is
defined over all space. It therefore is not suitable without modifica-
tion for such things as hard-core potentials. Assuming the potential
to be allowable, the prescription implies that a repulsive potential
can only give rise to a phase shift of 0 as £ — 0; i.e., it cannot be
any other negative multiple of «. In the one-body case, this is
implicit in Levinson’s theorem (footnote 1}.
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Now use (3.1) and (3.2) on the rhs of (3.3), and multiply
both sides by ¢¢*(ro) and integrate over r, to get

f @o* (ro)do(ro)dro= — f e (r)Yo(r)dr.  (3.4)

From this, we conclude finally

fwuo(fo)uh'(fo)dfo: 0, (35)

where

Yo(ro)=[uo(r0)/70]¥ 00(R0),

and
@o(t0) =14 (r0) /70]¥ 00(Q0) = 10(x0).

This proof is implicit in the work of Mittleman,’ in
which he constructs an equivalent (nonlocal) potential
for Yo(ro) for which the orthogonality property is
preserved at every stage of approximation. However, by
virtue of our definition of absolute phase shift, we can
readily go one step further and say that this implies
the triplet phase is a nonzero multiple of #. For the
function #;,=2r¢¢™™ has no nodes; therefore, the
function #y(rs) must have at least one node. From our
method of computing phase shifts, it follows that this
is equivalent to the phase shift being nr where >0
is the number of nodes in #,(7;) (neglecting the measure
zero probability that the slope of #, is horizontal at
ro= %, which would add another x/2 onto the phase
shift!). To show that at least one of these nodes is not
connected with the existence of a triplet bound state
of the H~ ion, one need only consider the case where
the repulsion between the electrons was increased and
the attraction of the electrons to the nucleus was
decreased. It is clear that a point would be reached for
it to be physically inconceivable for a bound state to
exist. Yet everything in the above proof would go
through, and there would still have to be at least one
node in ug(ro).

It is worth noting in the proof of orthogonality that
the eigenfunction character of ¥_(r,,r;) with respect to
the total Hamiltonian is not used. This has as a conse-
quence the fact that if one uses any antisymmetric
Ansatz for ¥_ and computes an equivalent one-particle
orbital and phase shift as defined above, then the nodal
behavior of this function and the orthogonality still
apply. As a trivial example, consider the Ansatz

sinkrg sinkr;

Y_(ro,r1) = (4m)~H e10(r)— o10(ro) ;. (3.52)

70 71

If we compute u;(ro) according to (1.2), confining our-
selves to the £=0 case, we find

lim wy(ro)/k=1ro(1—8¢).
k=0

7 M. Mittleman, University of California Radiation Lab. Rept.
UCRL-5711 (1959) (unpublished).
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Frc. 2. Solid curve is plot of k luu(roe)=Fk"lro S o10¥. dri,
where W_ is given in Eq. (3.5a) for £#=0. The phase shift in this
case is 7. Dashed line is scattered function before orthogonalization
to ground state function. For that curve phase shift is zero.

A simple integration shows that this function is ortho-
gonal to u,(r), and it is also clear that the function
has one node at ro=1n 8. [Note that 87,¢~ is a multiple
of u1,(r0).] If we had concentrated our attention on
k1 sinkrg— ro as £ — 0, then we would have said the
phase shift approached 0 (see Fig. 2). The function
sinkry, for arbitrary &, is the analog of the function
ix(ro) in the Hartree-Fock approximation before
orthogonalization. The function w#(ro) is then the
orthogonalized form of #; and, as discussed in Sec. II,
it can be substituted in (3.5a) without changing ¥_.

In this context, it should be mentioned that in
the work of Mittleman and Watson,® which concerns
the construction of equivalent one-body potentialsin the
case that an incoming particle is different from the
particles in the target, the functions for which, the
potentials are constructed are equivalent to those
defined in (1.2).

We shall conclude with an example of a nontrivial
method in which the phase shift is determined by a
procedure different from any of those discussed above.
It has been shown® that the s-wave scattering of
electrons by hydrogen can be described in zeroth order
(which approximation nevertheless can be expected to
give results correct to within 259)) by the equation

92 a2 2
[—————- —+1- kz]\Ifo(") (ro,r1)=0. (3.6)
Ir? Irs? 1<

r< is the lesser and 7, is the greater of 7o and ry. [¥,@
is an approximation of (rr; times the) s-wave function

8 M. Mittleman and K. Watson, Phys. Rev. 113, 198 (1958).
9 A, Temkin, Phys. Rev. Letters 4, 511 (1960).
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of the e—H system.] The equation can be considered
completely in the region 7o>7;:
8 3 2
[——————~——+1—k2]€bo‘°)=0, ro>ry, (3.6a)

6112 71

providing one adds the additional beundary condition
corresponding to the triplet ¥ that @ be zero
along the line ro=71. ;9 can be expanded in the form

B0 (79,7,) = sin (kro+6)u1o(r1)
+ X Cueouno(ry), (3.7)
n=2

where
kn=(1—n~2—k2)},

The uno(r1) are 7y times the radial s state wave func-
tions of the hydrogen atom. The sum includes the
states of the continuum (for which » — 1/p, where p is
the momentum of a continuous state). Each term is
separately a solution of the above equation, thus
obeying one of the boundary conditions of being 0
along 7,=0. The C, and § are determined by the
remaining boundary condition &,© (ro=r)=0. In
actual practice, we use a finite number of terms and
determine the C, and 8 by minimizing the expression
Jo°|®0@ (ro=71)|%dro. The minimization leads in the
case that we only include the first two terms of (3.7)
to the expressions

0 o0
_ f s f sinZkrusiidr 4290,
0 0
tan26= ’
@ o
f e yadry f cos2kruseldr+ 3% — 9.°
o ]

and

- f sin (kr-8)e Y usotoodr
[

<3
f e-2x2r,u 2 O'Zdr
0

® (sinkr
N9 == f et DT qusedr.
o Lcoskr

C2’~=

Here

The integrations are trivial, and one can select the
correct quadrant of 26 by testing to see which 24
actually minimizes fu°|®,®|%dr. This uniquely deter-
mines Cs.

At this point § is still undetermined modulo =, and
we would expect to use (1.2) to make § unique. However,

A. TEMKIN

u, (fo} )
sind’

lim
ko

]

5
4r
3
2

dF

-5
-6 -

F16. 3. Zero energy form of  given in (3.8), where &© is
given by (3.9) and (3.7). Only two terms in (3.7) are used. The
function limk — 0 (sin8)lur(re) is plotted. It is orthogonal to
t14(r0) = 2roeTo,

to use (1.2), which reduces here to

My (f o) = f 10 (f 1)‘1’0{0) (?’o,f 1)df 1y (38)
0

one must know how ¥,@ is related to ®,®. This is
not completely obvious since if ®o® (ro,r3) is a solution
of (3.6) in the region r,>7;, then the two solutions
=P (r1,70) are solution of (3.6) in the region r1>ro.
Physically, it is obvious that if ¥ is to correspond to
the space antisymmetric (triplet) solution

‘I’O(O) (7’0,?’1) = ""I,”(o) (rl;rﬂ) y
then ¥©® must be the combination

‘Po(o) ='~I’()(°) (1’0,7’1) ro> 71
= _@0(0) (71,1’0) 1’0<T]. (39)

With this, the function ¥, is completely defined and
the integration (3.8) can be carried out from which &
can be found uniquely. On using the two term approxi-
mation of ®,®, we get the curve of Fig. 3, from which
it is clear that & — .
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We consider the configuration partition function, Zy, of a classical imperfect gas of particles having rigid
cores. The rigid cores result in a geometric simplification which makes it possible to find a finite recursion
relation between Zy and Zy_.. From this, it is possible to express Zy in terms of the vacuum expectation
value of a finite Boson operator raised to the Nth power, N being the number of particles.

T the present time there exist many points of view,
formalisms, and exact relations, pertinent to the
evaluation of the partition function of a classical gas.
None of these have proved sufficiently powerful to
solve the problem in any except weak coupling or low
density situations; yet, they are nonetheless valuable in
that, taken together, they may ultimately provide the
needed insight into the structure of the true solution.
In the present note, we consider a gas of pairwise inter-
acting particles which have an infinite repulsive core
interaction together with an arbitrary short range
finite part. Since a real gas always has some repulsive
core, the situation discussed here is quite general. We
shall present a formalism appropriate to this problem
which, while it does not offer an immediate solution, is
sufficiently different from other approaches that it may
be of value.

Mainly two ideas are involved. The first is the geo-
metric simplification resulting from the fact that it is
always impossible to find a configuration with two or
more particles overlapping (by the word overlapping we
of course mean overlapping of the hard cores). This idea
has been used before,! but we believe not quite in the
same form as in the present work. In any event, the
geometric simplification is essential for the second part
which consists in the reduction of the partition function
to the evaluation of the expectation value of an operator
raised to the Nth power, N being the number of par-
ticles. That is to say, we reduce the evaluation of a
(3NV)-dimensional integral to something similar to the
trace of an iterated linear operator. Such a procedure is
conveniently employed in many problems of statistical
mechanics, for the problem then becomes one of finding
the largest eigenvalue of the matrix in question. In our
case, unfortunately, we cannot use this well-known
device because the matrix is not Hermitian, and indeed
has no eigenvalues. All the same, it is our hope that this
formal reduction may be perspicuous.

We shall begin by discussing the case of rigid spheres
of diameter ¢, no additional finite potential being
present. In this case, the configuration partition func-
tion Zy depends only upon the density and is indepen-
dent of the temperature. The configuration partition

v T, L. Hill, Statistical Mechanics (McGraw-Hill Book Company,
Inc., New York, 1956), p. 256.

function is defined by

1 N
In=— f II a3x; In(x, -+ y XN)’ (1)
Nty

where
IN=1, all IX,'—XJ‘[>0'
0, any |x;—x;|<a.

2

The function Iy may be expressed in terms of the
Mayer f functions by

In=II (1+f:p), 3)
(i.3)
where
f*ii—ly IX;—le<d (4)
= 0, |xi—x;{>a
Therefore,

N
In(xy, -+, XN)={I=I2(1+f1:‘)}IN—1(X2, <o, xy). (5)

In Eq. (5), we have explicitly extracted the part of I»
depending upon the variable x;.
On expanding the first factor in Eq. (3), we have?

N
IN(XI) Tty XN)=IN—1(X2) Sty XN){1+Z(f1f
=2

1 N 1
= X f1j1f2j2—|--.-—|—m Z (ff)

2! itde=2 E3S1

1
5 E UDte) ©

12

Now if we inspect the series in Eq. (6), we see that all
terms involving 12 or more f’s may be deleted. This is
a simple consequence of the fact that in three dimen-
sions it is impossible to arrange more than 11 rigid
spheres of diameter=a in such a way that all their
centers are within a distance a/2 of a given point. In
other words, a term such as

Z f1j1' . 'f1j12
1e--d12

is nonvanishing only when Iy_;(Xs, * - -, Xx) vanishes.

2 The sums appearing in Egs. (6) and (8) are to be understood
as not including terms in which two or more j’s are equal.
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Consequently, we may write

In(xy, -+, X5)
= {éoGa(Xﬂ Xz o Xy) M v—y(Xer - xw), (7)
where
Go(x1] X2+ - - Xw) |
1~ N
- EQ . J“‘_Z—E_2D’(x1—~ xi)- - f(xi—xi)]. (8)

The point is that only 12 different G’s appear in Eq. (7)
instead of N, as would be the case if no rigid core were
present. We might remark in passing, that in two di-
mensions the terms beyond G; would be deleted, and
in one dimension only Gy, G, and G, would appear. For
rigid oriented squares in two dimensions, only G- - -Gy
would be present, one less term than for circles.

It is easy to see how a finite range potential would
modify Eq. (7). One must ask how many rigid spheres
of diameter=a can come within a distance a/2-}+d of
a given point, where b=range of the potential. What-
ever the value of b, only a finite number of G’s are
required. In this case, of course, the f(i5), and hence
the G,, will depend upon the temperature.

We next expand Iy in a Fourier series

"',XN)

=¥

P1---PN

In(x1,
N

exp(i ? piX)on(py, 5, Px), (9)

where

¢N(PE; s P.?V)

1

N
=V_Nf Hd3x.- IN(Xl, ey, XN)
vV

N
Xexp(—7 ? pi-x). (10)

A Fourier series is obviously convenient since the
terms in Eq. (7) are in the form of a convolution,

The Fourier transform [Eq. (10)] of the first term
in (7) (i.e., in the s=0 term) is given by

F[In1(%s, -+, Xn)]=8(pr)dn—1(Ps, (11)

where F[ ] means Fourier transform, and é(py) is the
three-dimensional Kroenecker delta function. For the
second term, we have

Ty pN):

F[i S =X )z -+, x3)]

inw
=°I;Z Z F(q)¢N—1(pZ) Tty pi+q: “ Ty pN)

e Xs(p—q), (12)

ELLIOTT LIEB

where V-'F(q) is the Fourier transform of f{x), i.e.,

Fg)= f exp(—igq- x)f(X)d*x. (13)
v

For the rigid-sphere gas in three dimensions,
F(q)=—f exp(—iq-x)d*x
r<a :

= (4mwa/q*){cosqa— (1/qa) singa}. (14)

The third term in (7) yields
FL Y f(x1i—x)f(xi—x)In-1(Xs- - - Xn)]

(i

=2 2 2 F(q)F(q2)8(p—q1—q2)

(ily @ gz
Xon-1(pe, * -

It is easy to see from Eq. (15) the form of the remaining
terms in (7).

At this point we introduce the notion of second
quantization. Since Iy, and hence ¢y, are symmetric
function of N variables, we seek an algebraic formula-
tion of Eq. (7) which automatically keeps track of the
N—1 similar terms in Eq. (12), the (N —1; 2) terms of
Eq. (15), etc. Such an algebraic formalism has already
been developed in connection with Boson fields and is
called second quantization, but the formalism itself has
nothing to do with the esoteric nature of field theory
and is merely a convenient “bookkeeping” arrangement.

To each value of the “momentum” k, we associate
the operator ayx and its Hermitian conjugate ax* with
the well-known Boson commutation relations:

[ak,ak':|= 0, [ak+’a'k’+] = 0) [ak:ak’+]= é (k— k’)-

S Pitqy, s, pitgy s, pa). (15)

(16)

From any function ¢x(ky, - -, ky), we generate the
corresponding “‘state” Y in the following way:

yy=3 .- g.: én(ky, -, ky)axte - -axyt[0), (17)
k1 N

where |0) is the “vacuum” and has the property

0x]0)=0, allk, (18)

It then follows that the state generated by the right-

hand side of Eq. (11) is given by O@/n-1, where

Op= ao+ (19)

and yYw_; is the state generated by ¢n_;. The state

generated by the right-hand side of Eq. (12) is Owy.y,
where

O1=V-13 F(q)agta, apq. (20)
a.p

In general, the state generated by the term G,Iy_; in
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Eq. (7) is given by Ox—_1, where

11
Op=—— Z F(lh)' : 'F(qs)a+(ps+l)

S Vep1epetrar--qs

-+ -ar(pa(pitqi)- - -a(p,t4qs)
><5(Ds+1—§1 q:). (21)

We, therefore, have
¢N = O‘pN—ly
0= Z Os;
=0

(22)
where
(23)

the summation on s being the same as in Eq. (7). Itis
to be noticed that each O, is essentially a momentum
conserving creation operator, i.e., acting on a state of
N particles it creates a state of N41 particles. With
this formalism, we have achieved our goal, for the
relation Eq. (22) does not contain N explicitly. The
state Yy is simply given by a definite finite N-inde-
pendent operator acting on the state Y n_1.
Now, since I;(x1)=1,

Y= kZ $1(k1) airt | 0)= ? 8(kq)axi*|0)

=ggt|0)=0]0). (24)

Hence, from Eq. (22),
¥x=0%]0). (25)

It is next necessary to convert our knowledge of Yy
into Zy. To accomplish this we notice that, by definition,

Zy=(1/N)V¥x(0,0, ---,0) (26)

which, aside from normalization, is the projection of
the state Y onto the state (agt)¥|0).
We, therefore, have the result

Zy=[V¥/(N1)*X0]ac"0¥|0). (27)

In the case of rigid particles withou! a finite potential,
Zy may be expressed in still another way. Since in this
case Iy=(Iy)? we have

1 N
ZN=——'fIN2<X1, ---,xN)Hdax,-
NlJy 1

VN

-— %

N! p---p¥

Id’N(pl: Ty pl‘/')l2 (28)
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which, aside from a constant, is the norm of the state yy.
Hence,

Zy=[V¥/(N?J0[ O)NO¥|0).  (29)
The advantage of (29) over (27), if any, is that Zy is
expressed in (29) as the expectation value of a Her-
mitian operator. If a finite potential is present, Zx, O,
F(q), and Iy are functions of 8= (k7). By using an
obvious notation, Ix(28)=[I~(8), and consequently,

Zy(28)=LV¥/(N1)2]0O[[0*(8)][0(8)]¥]0).

Unfortunately, O is not a Hermitian operator and,
in fact, possesses no right eigenfunctions® (consider the
operator Og=a¢"). If O possessed a complete set of
orthogonal eigenfunctions, to evaluate Zy would merely
require finding the largest eigenvalue of O. The repre-
sentations, Eqs. (27) and (30), may nevertheless be
perspicuous.

It is also possible to generate the grand partition
function Q using the operator 0. By definition

(30)

06,5)= szo Zn()e¥, (31)

where z is the activity. Since O is a creation operator
and Ot is a destruction operator, it follows that

O] (OHYOM|0)y=bx uV YN 1)2Zn(28). (32)
Consequently,

(0] exp(A\O+)exp(AO)|0)

- z_o \n/n V= (n)}Z,(26).  (33)

If we now set
A=3zV, (34)

we have the result

Q(28,2)=(0] exp[AO*(8)] exp[A0O(8)]]0).

Equation (35) was derived from (30). Equation (27)
could have been used as well.

(35)

3 The operator O, however, possesses a complete set of left
eigenfunctions.
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The object of this paper is to establish the equivalence of the Kubo-type transport coefficients with those
obtained by the method of Chapman and Enskog. Kubo-type coefficients are derived by a simple method,
based on classical mechanics, and these are found to be in general agreement with those found by Mori, who
has, however, discarded some important relaxation terms. The neglect of these terms by Kubo and other
authors has the effect of leaving their coefficients of diffusion and electrical conductivity divergent. It is
shown quite generally that the computation of the corrected Kubo-type coefficients for dilute gases leads
to the same results, and even the same calculations, as the method of Chapman and Enskog. The equivalence
of the two methods for dense systems is also briefly discussed.

1. INTRODUCTION

HERE has been a renewed interest in the theory of
transport processes in the last few years, stimu-
lated to some extent by Kubo’s quantum-mechanical
formula for the electrical conductivity.! It was
recognized that the same method might be used to
produce formulas for other transport coefhicients, and
this has been done by Mori,> and by Montroll?
Kirkwood,* and McLennan.5 Similar results had been
obtained previously by Green,® by a different method.
The expressions, representing the transport co-
efficients, obtained by different methods often differ
slightly from one another; and, as they are not easy
to evaluate, it is not a simple matter to decide on their
relative merits. The correct formulas should pre-
sumably be in agreement with those obtained by the
Chapman-Enskog method for dilute gases, whose
generalization to dense fluids was developed to some
extent by Born and Green.” In gas theory, a partial
equivalence between the Kubo-type and the Chapman-
Enskog formulas has been demonstrated by Mori,? for
Maxwellian molecules, and by Montroll, for the co-
efficient of self-diffusion. The purpose of this paper is
to present a general proof of the equivalence of the
two methods, for both dilute gases and dense fluids,
which will also serve to establish the correct Kubo-type
coefficients. Classical mechanics will be used for the
sake of simplicity, but a similar quantum-mechanical
formalism is easy to construct.

2. NOTATION AND FUNDAMENTALS

A system of particles, constituting a fluid, is con-
strained within a region of volume ¥ by a potential

1R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

2H. Mori, Phys. Rev. 112, 1829 (1958).

3E. Montroll, in Termodinamica dei Processi Irreversibili
(Nicola Zanichelli, Bologna, 1960), pp. 217-261.

4 J. G. Kirkwood, reference 3, pp. 205-216.

5J. A. McLennan, Phys. Fluids 3, 493 (1960).

8 M. S. Green, J. Chem. Phys. 22, 398 (1954).
( 7 1\;[) Born and H. S. Green, Proc. Roy. Soc. (London) A190, 27
1947).

8 H, Mori, Phys. Rev. 111, 694 (1958).

¢ E. Montroll, reference 3, pp. 255-260.

barrier, which contributes to the external forces. The
positions and velocities of the particles, which may be
of different types, are x; and & (i=1---N). The mass
of the ith particle, assumed to be of the ath type, is
m;=m,; its potential energy due to external forces is
¥a(x;) and its interaction energy with the jth particle,
assumed to be of the bth type, is ¢a(r;;), where r;;
=x;—X;. For brevity, ¢¥,(x:), ¢e(r;;) and similar ex-
pressions will often be written as ¥, ¢a, --- in the
following. Thus, the total potential energy of the
system is Oy =Z; (Yot 1Z ibar)-

The phase-space distribution function for the isolated
system of particles Fy satisfies Liouville’s equation:

dFy OFy dFy 1 0dny OFy
— i( 1..____.__.__)=0, (1)

diy Ot 9E;

The normalization and other properties of this function
are detailed in an earlier paper by the author.® It can
be used to construct the single-particle velocity
distribution function f, which, for a dilute gas, satisfies
the Maxwell-Boltzmann equation

1 . dfs
+E1. —————— ai———zbl:fa;be’

m; aXi

@)
[fufil= f f (fo'fs' = fof»)gdbdE;,

where g=|§—¥| and db is an element of cross
section for the encounter (&/,%/) — (¥,§). It has
been shown by the author! that (2) is a rigorous
consequence of Liouville’s equation at low densities.
The number density of particles of the ath type
(obtained by integrating f. over &), is n,; the cor-
responding mass density is po=m#, and the total
mass density is p=2,p,. Two different types of condi-
tional means will be required: one, symbolized by
(+++)a, is conditional on the presence of a particle of

2 H. S. Green, Proc. Phys. Soc. (London) B69, 269 (1956).

1 H. S. Green, Molecular Theory of Fluids (North-Holland
Publishing Company, Amsterdam, 1952), Chap. 8; also, M. Born
and H. S. Green, Proc. Roy. Soc. (London) A188, 2 (1946).
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the ath type at x;; the other, symbolized by (-+-);, is
conditional on the presence of a particle, irrespective
of type, at x;. These are related by p(- - * }i=Zapa(" * - )a-
The mean velocity of a particle of the ath type at x; is
u,=(&;),, but the local mass velocity is u=(&;).. If
v;=§;—u, the local diffusion velocity of particles of
the ath type is Wo=(vi)a, but (vi};=0. The local
temperature 7, also a function of x;, is given by
3kT=(mv2) and B=1/(kT).
If
Ei=3v+3Z v/ m, ©)

the internal energy per unit mass is U=(E;. As

shown elsewhere,” if V=9/0x; and P; is the tensor
Pi=vyv,— %Ejri,-vcf)nb/ M

C)

the local pressure tensor is given by p=p(P;).. Also,
if u, is the chemical potential, per unit mass, of the
ath constituent, and Q; is the vector

Qi= (Bi—pa)Vi~3Z¥:;¥:> Var/ M,

the local thermal flux is q=p(Q.).
To summarize the required macroscopic equations,

if
(©)

®)

D= (3/8)+u-(8/0x,),
the hydrodynamical equations read

Dp+pV-u=pD(p./p)+ V- (paWe) =0,
pDu-{- v p+2¢ﬂav¢a= 0.

The coefficients of volume and shearing viscosity
(¢ and %) are defined in

P=p3—{V-ud—2pV,u,
Va=1(Va+uv)—V-ud/3,

where p is the hydrostatic pressure and $ is the unit
tensor. The equation of energy transport reads

PDLI+ (P : V) * “+ v. (q+zapuﬂawa)+2apawa ‘ V‘l’a= 0;

and the coefficients of diffusion and thermal conduction
are defined in

PaWa= —ZbDabV)\b—DaVT/T,
q=—ZDyVA,—KVT/T,

9

(8)

&)

where
o=+ (10)
The entropy per unit mass, S, satisfies
IS=U —Z4Pakla
+ (p—Zapatta)/p (1)

SVT= (Vp—ZapaVita)/p-
3. DERIVATION OF TRANSPORT COEFFICIENTS

The Chapman-Enskog method? of solving Boltz-
mann’s equation (2) proceeds, in effect, by expanding
the distribution functions f,, fi, -+ as Taylor’s series

22 See S. Chapman and T. G. Cowling, Mathematical Theory of
Nonuniform Gases (Cambridge University Press, New York, 1939).
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in the gradients Vu, VT, and VA, (and the higher-space
derivatives VVva, VVT, etc., if required). Thus, f; is
expressed in the form fo=ft+7f,O+f,® 4., where
fa® is linear in the gradients, f,® is quadratic in the
gradients and linear in the second derivatives, etc.,
and
Ja=na(38ma/m)} exp(—36m.v.2) (12)
is Mazxwellian in form but depends on the space and
time variables #,, 8, and u (in v;=§,—u) instead of
the constants of equilibrium. The generalization of
this method requires a similar expansion of the function
Fy=Fy"+Fy®O-+Fy®+--.. For the determination of
the transport coefficients, only the first two terms in
the expansion are needed, so that one can consistently
discord terms quadratic in the gradients or involving
higher derivatives. Thus (1) reduces to
dFn® /din= —dFx®/din. (13)
The correct choice of Fa®is clearly of great importance;
it is essential that the mean values ()8, (mwv2)J
(E:)®, computed with Fx° instead of Fy, should yield
the exact values u, 32T, and U, etc. These require-
ments are met by taking

Fx®=exp[ — B+2:8m.(u.— E.)],

B= fﬁpdx,,

where B, 8, u. and u (in v;) are functions of time, and
8, a, and u depend on x; as well. Then one has

(14)

dFNo/dth': FNO[ — pr (6p/p)dxl]

+FNZ{mi(ua— E) (D+v;- V)8

+mB(D+vi- VuatmB(Dutv;- Vu)-v;

—3Z;(rij- Va) - Voo +5vi- Z;(ri;- VB) Vbar
+miBvi V.

To eliminate the time derivatives, one uses the macro-
scopic equations, which yield

(15)

Du=— (Vp+ZupaVWa)/p
= —_— SVT - EapaV)\a/P )
DS=D(p./p)=0,

(16)

cotrect to terms linear in the gradients. The last two
results show that, if 8 is any thermodynamic variable,
Db=(36/3p)Dp=—p(36/3p)V -, an

where 90/8p is to be computed keeping S and p./p
constant. With these substitutions, (15) reduces to



346 H. S.

dFy*/dix=Fn"Ry, where

RN= (E,M,'BP,"}'A)V . u+E,m.-BP,-: V,,ll
+ZmiBvi: (VAa—ZspsVAs/p)

+ZmiB(Q:—TSv;)-VT/T, (18)
where
P;= (v2—3Z;t;;* Voar)/3—p(3U4/9p)
+(Ei— Ua)pkT (38/0p),
Ue=p,+TS—p/p, (19)

A= f 020 (85/5)/0pdxi—Zampd (8] )/ 3p.

To obtain the Kubo-type formulas, one integrates
(13) in the form

t
FN(1)=FN°f Ru(x,E)dV, (20)

-—x0

where x;/ and &’ are the positions and velocities of a
set of particles at time #/, which by their natural
motions reach the positions x; with velocities §; at
time ¢ (At this stage the variability of 8, us, and u
with time and place may be forgotten.) By using the
approximation Fy=Fy’+-Fy' to compute the means
p=p(P:)i;, Wo=(E&)s, and q=p{Q;);, one recovers the
macroscopic equations (8) and (9), with the following
values for the coefficients:

0

s°=ﬁp<P,- f 2,m,-P,-’dt’>
[1}
n=(8p/ 5)<Pi: f 2,m,~P,-’dt’>

12
t - 0
Dv= (Bpa/ 3)< Vit f Z;®mvi' = peZmivi'/, P)dl'>

a

¢ 0 (21)
Do= (Bpa/ 3)<Vi' _[ w Zm;(Q;'— TSV/)df'>

0

K= (BP/3)<Qi . jj 2;(Q/— TSv,-’)dt’> >

1

where (--+) and (--)® are means formed with the
equilibrium distribution function, the summation X ;®
is restricted to particles of the bth type, and the
primed quantities have x,/ and &' as arguments
instead of x; and &,

Apart from the coefficients { and D, these results
agree with Mori’s.?2 The discrepancy affecting the co-
efficients of diffusion is perhaps the most serious, as it
also affects Kubo’s electrical conductivity formula;
the latter is (as we shall see) actually divergent.
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Kubo’s method is to focus attention on the effects of
the external force on the system, and ignores relaxation
effects. Physically, an external force tends to produce
a compensating pressure gradient, which is an in-
dependent cause of diffusion, and modifies the direct
relationship between the external force and the drift
velocities. The fact that VA,—ZpsVAs/p, rather than
V)., must appear in (18), is because only differences
in force per unit mass can cause diffusion.
It is convenient to notice here the relation

PaPb 2
Doo=—Dap=—Dpa=Dyp= Bn¥/nany){ — ) D= (22)
P

between the coefficients of (9), when only two different
types of particles are present, and the coefficient D,
discussed in Chapman and Cowling’s book.”? The co-
efficient of self-diffusion is obtained from D), by
identifying the two types of particles.

4. EVALUATION FOR DILUTE GASES

In this section it will be shown that the evaluation
of the formulas (21) for dilute gases always leads to
exactly the same results as the Chapman-Enskog
method.”? For this purpose the coefficient of volume
viscosity can be disregarded, as this tends to zero with
the density; the same applies to contributions to the
viscosity and thermal conduction which depend
explicitly on the interparticle potential ¢as in (21).
One therefore may set P;=v,;v; and

Q,'— TSV.'= % (V,-z— CakT/ma),
Co=5+2log(n./ T — 22, (mams/p)
Xlog (ns/TH).

(23)

The task is then to evaluate expressions of the general
type '

I(o,7) =na<a.,(v,~) ‘[ ; Ejrj(v,-’)dt’>i. (24)

As these are independent of the time ¢, it is permitted
to set #=0; also, because the microscopic motion is
reversible, it is permitted to change the sign of ¢, v,
and v;/ simultaneously. Assuming that ¢ and 7; are
either both even, or both odd, functions of the velocities,
one then has

I(a’,-r)———na<a'a(v,~) fo i EjTj(Vj')dtl>i. (25)

To evaluate this expression, one has to separate,
from the grand ensemble of statistical equilibrium, the
subensemble for which the velocity v; of the ith particle
has a definite value, vo say, at time ¢=0. If fi(4,v)
denotes the special velocity distribution function for
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this subensemble, one has
16:)=V [ 14ontvo
X [ 2 [ flewm@ariv, (26)
0

where V is the volume. By hypothesis, at the initial
time =0, f; must reduce to

Jo0,%) =12 (v)+8a0 (v—v0)/ V. (27

At the time {= oo, f; will have reverted to Maxwellian
form, but owing to contributions from the distinguished
particle, the mass velocity, temperature and the
density of particles of the ath type will be slightly
displaced from those of the distribution f;°. Calling
the displaced values u+-ou, 7+67, and #.+8n,,
conservation of mass, momentum, and energy require
that

Vén,=1,
pVou=m,v,, (28)
3InVkoT=mavi?—3kT.
Then, as one sees from (12),
Fo(oo,v)=F[ 14 8ardns/ns+Bmyv - Su
+31(Bmy?—3)8T/T]. (29)
Hence, if
fb (tiv) =fbo (v>+gb(t7v)/ V; (30)
the boundary conditions on g, are
85(0,v)="8a (v—v0)
25(0 V) =fi[8ar/ mt-Bmamav - vo/p 31)

+3(Bmavd—3) Bmy2—3)/ (3n)].

On substituting (30) into (26), it is clear that if
I(s,7) is to be volume independent, one must have

%, f F0(¥)ro(v)dv=0; (32)

also, if the integration with respect to ¢ is to converge,
one must have

%, f 2590 ¥) s (¥)dv=0, (33)

Both conditions are actually satisfied by all the
substitutions for 7,(v) which have to be made in
connection with formulas (21), but by the same
criterion Kubo’s electrical conductivity formula is
divergent.

To determine the function g, one substitutes (30)
into Boltzmann’s equation (2) and neglects the terms
of order 1/V?2, thus obtaining

0ge/0t=2c([gof "1+ [f2",8:D)- (34)
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For computational purposes, only the integral

Go(v)= f 2 (t,v)dt @35)

is required, and this satisfies

Zv([Gbrfcoj_l_ l:be,GC])=gb(°° ’V) '—gb(O,V), (36)
with gs(,v) and g;(0,v) given by (31). It is satisfactory

to notice that the right-hand side of this equation
satisfies the integrability conditions

f[gb(w)—gb(o)]dv=0

S [ Tav(=)=ga(0) Tvdv=0 37)

Ebmbf[gb(w)—gb(o)]v?d‘co

found by Hilbert.?® A solution, therefore, exists.
Of course Gy, like g5, is implicitly a function of v, as
well as v, and if one defines

G )= [ 18 WG v (@)
it follows from (36) that |
2GS G D=,
b= [ 18000 s e = O s
also
I(oy)= f 2:Go? () 7o (V). (40)

Thus, it is strictly necessary to solve only Eq. (39) to
compute I (o,7). It is now a matter of routine to verify
that, for the substitutions for o, required to determine
the coefficients of viscosity, thermal conduction, and
diffusion, (39) reduces to the equations solved by
Chapman and Enskog for the same purpose.

[1] Set ga=m4Vovo; then

o’= —fbol:ﬁab (mevv—kTD) —nkT8(Bmyr—3)/(3n)]

and
Zagt’= —fb"mb(vv— 128/3).

Thus, by summing Eq. (39) with respect to the implicit
suffix @, one obtains the equation used by Chapman
and Enskog to determine the viscosity of a gas mixture.

1D, Hilbert, Math. Ann. 72, 562 (1912).



348 H. S.
[2] Set go=imavsve; then

26" = — 311 (Sasmsr®— 5k T pa/ p)V,
and
Eagbd"“‘ -—% b"(mbv?-SkT)v

which, in conjunction with (39), yields the equation
used by Chapman and Enskog to determine the
thermal conductivity of a gas mixture.

[3] Finally, set o,=m,V,; then

&%= —fi'mu{8as— pa/ p)v.
Thus, for a binary mixture, (39) reduces to

Ze ([G,,",f c0]+[f aocha.]) == (Papb/ p) (fao/ nn)v
Z[G fETHL10,Ge D)= (papr/ p) (fe/ 1),

which are equivalent to the equations used by Chapman
and Enskog to determing the coefficients of diffusion.
Bearing in mind the relation (22) between Chapman’s
Dys and the coefficients Dyp of (21), the formula

D= (8/3) f Z.Go(V)m (8pe— pp/p) - VAV

derived from (21) is in exact agreement with that
deduced by the Chapman-Enskog method.

5. EXTENSION TO DENSE SYSTEMS

It is, of course, to be hoped that ways will be found
to evaluate the Kubo-type transport coeflicients, other
than the reduction to the Chapman-Enskog method
outlined for dilute gases in the last section. However,
the most straightforward approach to the theory of
dense fluids seems to be along similar lines. To begin
with, the necessary generalization of the Chapman-
Enskog method will be summarized.

In integrating the equation dFy"/dix=Fy"Ry,
which was derived in Sec. (3), the simplest procedure
is to regard Fy® as a linear form in the gradients Vu,
VT and VA, with coefficients which are functions of
the relative coordinates and velocities. When this is
done, the fact that u and the thermodynamic functions
depended originally on time and position can be ignored,
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and the equation to be solved becomes simply

IFy® 1 3By OFxW
Ei(vz‘"—‘“*""’—'"——)=FN0RN
ax;, my; Ox; OV

=Fy"Zmi(a-vi+bE+c+A:P+B-Q), (41)

with constant coefficients a, b, ¢, A, and B which can
be inferred from (18). Equation (41) can be integrated
explicitly, the result being

FyO=Fy[Zmi(a xi+bEr+cr+Ai(xive)
+B . X,‘E{)]—w‘, (42)

where 7 is the timelike solution of the equation
dnFy©/diy=1. As [7].*' is divergent, this cannot
appear in the expression for any physical quantity.
From the above expression for Fx™® it is possible, in
principle, to compute all the transport coefficients,
though the difficulties are, of course, very great in
practice. Several methods of approximation are avail-
able, based mostly on the substitution of a slightly
retarded time ¢- 7, in place of — « in (42). These will
not be discussed here.

It may be mentioned, however, that the result of
{42) can be used to deduce an exact solution of the
linearized Boltzmann’s equation. For instance, an
exact solution of

[GfT]=—mfo(v—125/3)
obtained in this way is
G=C[xv—x-v5/3],

where C is a constant, equal to 15(4wa®8n)! for rigid
spheres, if ¢ is the diameter. The coordinate X is to be
interpreted as the mean displacement of a particle
with velocity v from the mass center, but the point of
origin does not affect the value of [G,f"].

Finally, it may be remarked that the coefficients (21)
are exactly what one would compute using the formal
solution (42) of Liouville’s equation. For instance, the
expression for Dqy is simply

D= (Bma/3V)Zx f Fyov;

X[Z;®mx;— puZ jm;X;/ p J-»'d0n,
where dQy = dxdv,/TLN,!
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The equations of motion of the atoms in an isotopically disordered crystal, which contains a fraction p
of atoms of mass M, and a fraction 1—p of atoms of mass M, are expanded in terms of the normal co-
ordinates of a monatomic lattice whose atoms all have mass M = pM 4 (1—p) M. The equations of motion
of these normal coordinates are derived and are then solved by Laplace transform methods. The perturbed
normal coordinates are found to decay exponentially into the future and into the past until an inverse
power dependence on time becomes dominant. Calculations of the mean lifetime and frequency shift of
each normal coordinate are carried out for the one-dimensional case. A theory of the optical absorption
spectrum of an isotopically disordered ionic crystal is obtained, and the distribution function for the energies
of the normal modes and the mean energy in a normal mode are found. The generalization of the methods of

this paper to three-dimensional lattices is discussed.

I INTRODUCTION

HE problem we consider in this paper is the
following one. We have a crystal lattice at every
lattice point of which there is either an atom of mass
M or an atom of mass M, so that the total number of
atoms with mass M is pN, while the total number of
atoms of mass M, is (1—p)N, where N is the total
number of atoms in the crystal. We now expand the
displacements of the atoms from their equilibrium
positions in terms of normal coordinates appropriate to
a monatomic lattice, each of whose atoms has mass
pM1+(1—p)M,. In the limit of long waves, the
vibrational properties of this mean-mass lattice closely
approximate those of the isotopically disordered lattice.!
We seek to find the evolution in time of these normal
coordinates in the presence of the perturbation resulting
from the random array of isotopic impurities. We are
concerned in this paper with the classical formulation
of this problem, and defer a quantum mechanical
discussion to a subsequent paper.

In recent years, the vibrational properties of ran-
domly disordered lattices have been studied in some
detail theoretically, and a good deal of qualitative
and some quantitative information is now available
about the effect of randomly distributed impurities on
the frequency spectrum?®-5 and thermodynamic func-
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t Present address: Westinghouse Research Laboratories, Beulah
Road, Churchill Borough, Pittsburgh 35, Pennsylvania.
T General Motors Fellow in Applied Mathematics and Math-
ematical Physics.
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tions®® of crystal lattices.. Although it is well known
that the presence of even small numbers of impurities
and defects can profoundly alter the electrical, optical,
chemical, and tensile properties of crystals,'*13 there
have been virtually no experiments carried out to test
directly any of the predictions of the above-mentioned
theories regarding the effects of a random distribution
of impurities on the purely vibrational properties of
crystals.4

The recent emergence of neutron spectrometry as a
powerful tool in the study of the dynamical properties
of crystal lattices furnishes us with a probe by means of
which we can study the effects of defects and disorder
on the individual normal modes of a crystal. It is known
that in a purely harmonic crystal, a plane wave distur-
bance of a definite frequency can propagate freely
from one end of the crystal to the other unattenuated.
In the presence of a random array of isotopic scatterers,
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however, the various normal modes of the unperturbed
lattice are not independent any longer and, in fact,
interact with each other. A plane wave disturbance
of given wavelength and corresponding frequency in
such a lattice undergoes scattering by the impurities
and suffers a complex frequency shift in the range of
times which are dealt with here. The real part of this
shift gives the change in the normal mode frequency
of the normal mode associated with the given wave-
length. The imaginary part of the shift is directly
related to the mean lifetime of the normal coordinate.
Both the frequency shift and mean lifetime of a normal
coordinate can be measured experimentally by neutron
spectrometry as has been shown beautifully by Larsson
and co-workers!® in a study of phonons in an anharmonic
crystal. For this reason, it seems worthwhile to examine
carefully the problem of the mean lifetime and fre-
quency shift of a normal coordinate in an isotopically
disordered lattice, since, hopefully, experimental inves-
tigations of these quantities will not be long in coming.

In addition to their effects on the equilibrium proper-
ties of lattices, randomly distributed impurities can
affect nonequilibrium or transport properties of crystals.
There have been several theoretical and experimental
studies of the effects of a random array of isotopic
impurities on lattice thermal conductivity.16"

Klemens'® formulated the problem of determining
the thermal resistance caused by a random array of
isotope impurities as a quantum mechanical scattering
problem and calculated the scattering of phonons by
the isotope impurities.

More recently, the mean free path of phonons in
isotopically disordered crystals has been studied by
Mattis.’® After stating the problem classically, he
adapted quantum mechanical time-dependent perturba-
tion theory to obtain the mean lifetime of a phonon to
lowest order in the perturbation parameter. However,
Mattis makes an approximation in his treatment which
is unnecessary, and which, in addition, would have to
be removed before corrections to his result could be
obtained.

Recent work of Kubo,® Mori,® and Green? has
resulted in expressions for transport coefficients in
the form of integrals over time-relaxed correlation
functions of coordinates and/or momenta. In particular,
their expressions for the dielectric susceptibility and
thermal conductivity for systems which obey classical

15 K. E. Larsson, U. Dahlborg, and S. Helmryd, Arkiv Fysik
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statistics are
X, (@)= lim 8 f e, (0) M, (0))dt, (1.1)
04 i

k= B f IO (0, (1.2)
1]

where 8=1/kT. In Eq. (1.1) X,.(w) is the dielectric
susceptibility tensor, whose imaginary part is directly
related to the absorption coefficient of the lattice, and
M (¢) expresses the natural motion of the dipole moment
of the lattice. In Eq. (1.2), x, is the thermal conductivity
tensor, while J(#) represents the natural motion of the
heat current density in the lattice. The brackets {)
indicate an average over a canonical ensemble at time
t=0. Since both M(¢) and J(¢) can be expressed simply
in terms of the normal coordinates of the lattice, and
since in the present case the value of the normal
coordinates at time ¢ can be related to their values at
time {=0, the evaluation of the correlation functions
is greatly simplified. This fact imparts additional
interest to the calculation of the time evolution of the
normal coordinates of an isotopically disordered lattice.
In this paper, we calculate only the optical absorption
of an isotopically disordered crystal and defer the
discussion of thermal conductivity to a subsequent
paper, since the latter result has some independent
interest apart from the techniques employed in its
calculation.

The effect of a random distribution of isotope
defects on the distribution function of the energies of
the normal modes has been calculated to lowest order
by George,® who used the technigues developed by
Prigogine and co-workers?® in their study of irreversible
processes in many-body systems.

Although in the initial statement of our problem we
postulated that our crystal contains exactly Np atoms
of mass My and exactly N(1—p) atoms of mass M,
it will prove to be convenient in what follows to relax
slightly thisrestriction in the following way.® We assume
instead that the atom at each lattice site has a mass M,
with probability , or a mass M, with probability 1—p.
Then the lattice will contain % atoms of mass M with

probability
N
(, )pra-pr

If we now consider an ensemble of binomial lattices,
then the distribution of the number of lattices with & M
atoms is found to be approximately Gaussian with mean
Np and standard deviation equal to [N-p(1—p)]h
As N goes to infinity, the law of large numbers assures
us that the probability of a large deviation from the
mean number goes to zero. Hence, our following remarks

2 C, George, Bull, Acad. roy. Belg. 45, 239 (1959).
2 R. Brout and I. Prigogine, Physica 22, 621 (1956), and
subsequent papers. .
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will apply to a good approximation to the problem of a
lattice containing exactly Np atoms of mass M
randomly placed.

The equations of motion of the normal coordinates in
an isotopically disordered lattice are obtained in Sec. II,
and are solved formally in Sec. III. The resulting
expressions for the normal coordinates are discussed in
Sec. IV. In Sec. V, the results of the preceding sections
are applied to the calculation of the optical absorption
of such lattices. In Sec. VI, the techniques of this paper
are employed in a brief discussion of the problem
studied by George, viz., the determination of the
distribution function of the energies of the normal
modes of an isotopically disordered lattice.

The calculations presented here were stimulated by
the recent work by Prigogine and co-workers®® which
has gone so far in explaining the origins of irreversibility.
The mathematical techniques employed in the present
paper, however, are more closely related to those
employed by Van Hove and his collaborators® in their
treatments of “persistent” and “dissipative” effects in
many particle systems.

II. EQUATIONS OF MOTION OF THE
DISORDERED LATTICE

For simplicity, in the body of this paper we study a
lattice which contains only one atom per unit cell, and
furthermore, restrict our calculations to the case of a
one-dimensional chain. The generalization to three-
dimensional lattices containing more than one atom
per unit cell is indicated in Appendix A, where it is
shown that the results obtained in the one-dimensional
case can be carried over to the more general case by a
suitable interpretation of the summation index.

We thus consider a one-dimensional chain of N
atoms in which each atom interacts with its two nearest
neighbors only. The mass m; at the /th lattice point is
either M, or M.

The equations of motion for our lattice are

2.1)

where #; is the displacement of the /th atom from its
equilibrium position, and # is the force constant for
nearest neighbor interactions. Introducing the mean
mass of the constituent atoms, which is defined by

myhy="y (4pp1— 2041-+r1),

M=pM+(1—p)Ms, 2.2)
we rewrite Eq. (2.1) as
ﬂz-——“(%t+1~2%z+%z~1)+("*—"‘“"

X (1~ 2urt o). (2.3)

We will regard the second term on the right-hand side
of Eq. (2.3) as a perturbation on the equations of

% 1. Van Hove, Physica 21, 901 (1955), and subsequent papers.
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motion of the monatomic mean-mass lattice given by
the first term.

This breakup of the equations of motionintoan unper-
turbed and a perturbed part, with the monatomic mean-
mass lattice playing the part of the unperturbed
lattice, corresponds to a perturbation of the potential
energy of the lattice. An alternative derivation of the
equations of motion in which the monatomic mean-
mass lattice still plays the role of the unperturbed
lattice, but in which the perturbation caused by the
isotopic impurities is now assoclated with the kinetic
energy of the lattice is presented in Appendix B.

If we assume that the displacements u; satisfy the
cyclic boundary condition

U= UL N,y (2.4)

we can introduce the normal coordinates Qp for the
unperturbed monatomic mean mass lattice by the
relation

“= E\%{)gkmmm xp( ) 23

The normal coordinate Q. satisfies the reality condition

Q=" (2.6)

If we substitute this expression for %; into Eq. (2.3},
multiply the resulting equation by exp{—2wik'l/N},
sum over /, and use the orthogonality properties of the
exponentials, we obtain the result that

Ort0dQr=—3 1 B Qrr.

In Eq. (2.7), w is the kth normal mode frequency of
the unperturbed lattice and is given by

wr=wy|sin(wk/N)|,

@7

(2.8)

where
wr= (4v/ M7,

The “matrix elements” ® are given by

(—~——1) exp(zm(k’ k)Z). (2.10)

Equation (2.7) is the basic equation of this paper.

2.9

wyr?
@W_—

IIl. SOLUTION OF THE EQUATIONS OF MOTION

We denote the Laplace transform of Qx(t) by g:(s),
gr(s)= f e Qu()dt. (3.1)

On taking the Laplace transform of Eq. (2 7), we obtain

=2 L 5 ungun(s), (3.2)
qr\S}= i Z{; < (23U e .
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where

501(0)+:0(0)=ci(s) (3.3)
Stat=di.

This set of equations can be solved by iteration,

()= D (s)ae(s)+ 2 Den(s)en(s),

n{#=k)

(3.9

PrrPrin

T |

{ékn“" Z
& #n no din
@kkli’klkgq)kzn

dk 1dk2

— b (3.5)

kikg

We assume that this expansion converges.

We shall now classify and regroup the terms in
Dy.(s) to obtain results which express explicitly the
effects of the perturbation on the unperturbed normal
coordinates. We consider first the structure of Dy(s),
which for simplicity we relabel Di(s). It is given
explicitly by

1 1 Brr ek
Di(s)=———1 Bu—
dk dk2 ky (ikl
Bri1PrikaProk
T T (36
kika dkld}ag

We now introduce a function Gx(s) which is defined by
, Prr1PrrkoProk
dlcldkz

e l<I>kk1<I>k11c o
Gr(s)=Pu—2_ , 3.7)

k1 dr;

kiks

where the prime on the summations means that no
summation index %; equals k. The function defined by
the expansion in curly brackets in Eq. (3.6) can be
re-expressed as the sum of all terms in which no summa-
tion index equals %, plus the sum of all terms in which
one index equals %, ---, and so on. In terms of the
function Gi(s), we can thus express Di(s) as

1 1 1 1
Di(s)=———{ Go(s) ——G2(s) +—G3*(s) — - - -
dk dkz d,;; dkz

(3.8)

dp 42 14+ (1/d)Gu(s) zd,,-g—c;k(s)'

The function Gi(s) is analogous to the simple diagonal
part of an operator introduced by Van Hove

It should be mentioned at this point that it is also
possible to regroup and resum the terms in the expansion
of Gi(s) in such a way that the occurrence of repeated
intermediate indices k1, ks, - - -, &y, in (n-+1)st order, is
eliminated. This elimination is accompanied by a
“renormalization” of the denominators (s*4-wk?)™?
which appear in the expansion of G(s), in the sense
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that they are replaced by expressions of the form
24wk 24-Gr; (s) where the prime on Gk;(s) indicates
that there are certain restrictions on the intermediate
states in the expansion of the function. In the absence of
such a renormalization, we see from Eq. (3.7) that each
term in the expansion of Gi(s), regarded as a function
of the complex variable s, is analytic everywhere in the
complex s plane except for a cut along the imaginary
axis in the interval (—iwz,#wy), where wz is the
maximum frequency of the unperturbed lattice. The
effect of the renormalization is to alter the length of
the cut along the imaginary axis to bring it into closer
conformity with the true range of the perturbed fre-
quency spectrum. However, since the results of this
renormalization procedure are not used in the present
paper, we omit a discussion of this point here and
refer the interested reader to footnote 23.

A similar expansion can be obtained for the off-
diagonal elements Dy,(s). However, in light of the
remarks following Eq. (3.16), we could omit an explicit
discussion of these elements, at least insofar as they
appear in the calculation of the normal coordinates,
since they will vanish on taking a configuration average
of each Qi(f). Nevertheless, it seems worthwhile to
outline the derivation of the result for Di.(s) since
this result is directly applicable to the discussions in
Sec. VI and Appendix D.

Explicitly, we have that

1 q)klcl@lc 17
Dlm(s): - an‘z
s ky dkl
@kkfbk]kg‘i’kzn (3 9)
kike dkldkg dn .

We now sum all terms in which no summation index
equals %, those terms in which one summation index
equals &, - - -, and so on. We thus obtain the result that

G ® (S)

1
D{m (S) = —_Dkn(k) (S)[l -
dy

k
+(G"m(s) )2._ N .].1_
) .
Du®(s) 1

_dic+Gk(k) (5) Z’

where Gi%(s)=G,(s) is defined by Eq. (3.7), and
Di® (s) is given by

(3.10)

‘I’]olclq’km
Dkn(k) (S) = an'_ Z
k% diky

BrryPrykePron

— SUUTRN————

= (3.11)
bk drr1dis
ke #k

2 A. A. Maradudin, G. H. Weiss, and D. W. Jepsen, Westing-
house Research Lab. Sci. Paper 6-41402-6-P7 (September 7, 1960)..



NONEQUILIBRIUM PROCESSES IN DISORDERED CRYSTALS

The superscript ¢ means that no summation index
equals k.

We continue this process by summing all terms in
the expansion (3.11) in which no summation index
equals 7, those terms in which one summation index
equals #, - - -, and so on. The result of these operations

is that
G (s)
Dien® (5) = Dy ®™ (s)[l —_

n

H(5)-]

daDin®™ (s5)
= (3.12)
dn+G, &M (s)
where G,*" (s) is given by
@nkﬂl’kln
Gn(k") (s)=q)nn'— Z e —
kiske  dky
@nqu)klkz@kgn
+E e, (313)
ki#kn dkldlcg
ke#Ek,n
and Dy.*7(s) is given by
‘Pkk]q)kln
Dkn(kn) (s)=q)kn"' Z R
hzkn diy
Pt PreykooPhon
+ 3> —.., (319
ki#kn dk1dk2
ka#k,n
Combining Egs. (3.12) and (3.10), we find that
Din(s)=——"—""—"—+
s* w2 4-G® (5)
X Dy *™ (s) . (3.15)
s2tw,2+Ga %" (s)

We could continue to regroup and sum terms in the
expansion for Dy,%*"(s) by picking out all terms in
which no summation index equals &, all terms in which
one index equals %5, ‘-, and so on. The net result
would be to replace dx; by diy+Gri**? and to impose
the additional restriction that no summation index
can now equal k;. Clearly, this process can be continued
indefinitely until every function d, is replaced by
dp+Gp' "7 and in any term no summation index can
equal %, #, or any other summation index which appears
in that term. Then every function G,¢' " appearing in
the expansion for Di.(s) can itself be “renormalized”
in the way described in the discussion following Eq.
(3.8).26 However, in this case at least, what is possible
in principle becomes rather difficult to realize in
practice, and we restrict ourselves here to writing out

26 P. W. Anderson, Phys. Rev. 109, 1492 (1958).
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the explicit expansion for Di.(s) to the two lowest
orders in the perturbation: '

1
D
24wt +Gi®(s)  s2twa?+GEm (s)
1 (I’kqu:’kln
+—— — %
24w+ G ® (5) ki2tn $2+wki2+-Gr ™0 (s)

chn(s) =

X— — —---. (3.16)
24 wn2 4G (5)

In obtaining expressions for the normal coordinates
and for quantities which depend on them, we will not
be interested so much in results appropriate to any
particular configuration of the isotope impurities at
the lattice sites of our crystal, but rather in ensemble
averages of these quantities over all possible configura-
tions of the impurities in the crystal.® Thus for example,
we will have expressions of the form

s
<S 24w +Gk (S ) > configuration

to evaluate. It is, however, more convenient to evaluate
an expression which contains averages only of the form
(Gi(s)) rather than the more complicated average
indicated above. It turns out to be the case for the
present model that

1
< > - . (3.17)
s2 424Gy, (.Y) config 52+wk2+<Gk(s)>

where this result is exact to any order of the perturba-
tion. Equation (3.17) is most readily obtained by taking
the configuration average of Di(s), Eq. (3.6), term-by-
term with the aid of the results of Appendix C, and
then regrouping the terms in the expansion in the
manner described already. This point is discussed
more fully by Langer in a forthcoming paper.?”

This result together with the result established in
Appendix C that the configuration average of a product
of matrix elements (®rk;®Pkiks- - -Pk;n) vanishes unless
k=n, means that only the diagonal part of Qx(#) is
nonvanishing after averaging over all configurations.
This conclusion, of course, does not apply to the
configuration average of expressions such as Q. (£)Qx*(#),
to which the nondiagonal terms of Qi(?) contribute.

IV. TIME DEPENDENCE OF Q:(?)

At this point we must refer to two systems in a
discussion of asymptotic properties of Qr(£). The first
consists of a finite lattice of N atoms, and the second
consists of a strictly infinite number of atoms. The
physical properties of either system depend, through

27 J. S. Langer (private communication).
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QOx(®), on the function Gi(s). In a finite system, the
solution for Qx(?) can be written

Qk(t) = Zn Almeo‘k""

where the \;, are real, i.e., the roots of s2+w2+G(s)=0
all lie on the imaginary axis, and in fact there are 2N
poles since there are N degrees of freedom. Furthermore,
no matter what the collective behavior of the Qk(?)
might appear to be over a fixed length of time, all of
the Q(?) cannot ultimately tend to zero since there is
no physical mechanism available to dissipate energy.
The situation is otherwise in a system with an infinite
number of particles. From a mathematical point of
view this can be inferred from the behavior of G;(y).
For a finite system, to second order in the perturbation
Gi(3y) is given by
N Prr1Prik
Gi(iy)~Pu— 2 )

k17=k wk12— y2

4.1)

and it is seen that Gx(7y) has 2N poles at y=Zw;, Zw;,
-+ +, =wy. These poles all lie in a fixed interval, say
(—wz, wz). If the upper limit on the sum is taken to
be infinity, G (4y) has an infinite number of poles which
are still confined to (—wz, wz). Since these poles are
densely distributed throughout this interval, a branch
cut must be introduced in the s plane along the s interval
(—twg, #wz). This branch cut introduces the property

lim Gi(iy=tm) = — K (y)=£iJ2(3), (4.2)

where K,(y) and Ji(y) are real functions of the real
variable y, which in turn gives rise, as we shall see, to
dissipative properties. In considering a system with an
infinite number of atoms, we are in effect making the
Poincare cycle infinite. Thus, we cannot expect that
the expressions obtained below are valid for all time
in describing finite systems, no matter how large these
systems may be.

According to the result of the preceding section, the
solution for the configuration average of the normal
coordinate Qx(#) to all orders in the perturbation can be
expressed as

Qx(0)
2O A
@0 270 Joia P HG(S))

Q:(0) f“”‘” .
min S2tw+{(Gi(s))

Since the first integral is just the time derivative of
the second, we need only consider the latter, which
we denote by

1 c+i0 et
L(t)=— f — s
27% Jo—iw s2+wk2+(Gk (S))

The function (Gi(s)) satisfies the condition expressed

o100 sett

+ (4.3)

2wt

(4.4)
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by Eq. (4.2). This result follows from the definition of
the function Gi(s), Eq. (3.7), in the limit that the
sums over the indices k; are replaced by integrals. The
leading terms in the expansions of K(y) and Ji(y) are
given explicitly by?

PriPrk

Ki(y)=—%u+2’ (4.5a)

5 (wk?—y)p

Ji(y)=m sgny X" Orr;Pr1kd (wri2—9?), (4.5b)
k1

so that with the aid of the results of Appendix C we
find that

(Koo = — st T — o (460)
K = —wilurtw? (pe—pi?)— 2, ————, (4.6a
Y WE“M1 T Wi ‘ 2= [ N (wk12—y2)p

sgny
Je())=mwr?(uz *-I-t12)—N- %: wk?(wn?—y2),  (4.6b)

where it is understood that the sums are to be evaluated
only in the limit as N — «, and it is seen that

K(—y)=Ki(y), T(y)=—Tu(~y). (4.7)

These results are general, and hold in all orders of the
perturbation.

In Eq. (4.4) we make a change of variable, s=iy+c,
and pass to the limit as ¢ — 04-. With the aid of Eq.
(4.2) we obtain

no=— [ o
W) ==
2 vy =y — (K () +i(T(9))

1 00
E ——dy.
21 Vo Ur(9)+iVi(y)

The function Vi(y) vanishes for all |y|>7y, where
9o is the magnitude of the maximum frequency of the
unperturbed lattice. Similarly, the function Ui(y)
has simple zeroes for values of 4 which we denote by
y==;, where | yi| < yo. In the absence of the perturba-
tion resulting from the random distribution of isotopic
impurities, Vi (y) vanishes identically, and the roots ==y,
of the equation U(y)=0 are the unperturbed normal
mode frequencies of the monatomic mean mass lattice.
In the presence of the perturbation, the denominator
of the integrand in Eq. (4.8b) never vanishes. Following
van Hove? and Hugenholtz,* however, we assume that
for large ¢ the dominant contribution to the integral

dy (4.8a)

eiut

(4.8b)

28 The expression (1/x)p is defined by

(1 = lim —
;)P— ot B34
In taking the double limit e —0+ and N — ©, we always
ensure that ¢ remains larger than the spacing between consecutive
unperturbed frequencies.

20 N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958);
N. M. Hugenholtz, The Many Body Problem (John Wiley & Sons,
Inc., New York, 1959), p. 33.
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comes from the portion of the y axis about the points
where Ui(y) vanishes. If we expand Ux(y)+iV ()
about the points 3=y and retain the leading nonvanish-
ing contributions to the real and imaginary parts, I,(¢)
becomes approximately

I (;) f - 'w{ 1
e L o= U 0 +iVa(on)

1
+ }dy
(+y) Ui’ (=) +iVi(— )
Ny p° . { 1
ewt

dy, (4.9
y—yr—1il% }’+y:;—'ﬂ‘k}

27f.—<n

where

CNS={US ()] Te=NiVilys), (4.10)

where v.>0, and we have used the fact that since
Ui(y) is a function of 4* only, Ui/ (—y)==Us'(y).
On closing the integration contour with a semicircle
of infinite radius in the upper hali-plane, we obtain
finally

I~ 2N e T sinyyt, (4.11)
‘With this result, we can write finally
{Qe(D)~ 2N {Qx(0)e Ty, cosyxt

+Q:(0)e T sinyet}.  (4.12)
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Had we initially been concerned with negative times,
we would have found the same result as that just given
except that the factor ¢ T# would now be replaced by
e Tt Qg(t) thus depends on both ¢ and |¢|, and its
dependence on |¢| demonstrates the irreversible char-
acter of the motion.

We now solve for y; in the first approximation, The
equation Uz(y:)=0 becomes explicitly

— yetwe?= —wru1t+wi? (e — us2)

2

—_—y, ————, (413
N & (wk—wDep )

We solve iteratively, and to second order obtain
Ye=w.twr] Gui—Fpatiu?)

3o z)w"z 3 (4.14)
— 3 (ue—~pa®)— .
N wm (wk12—-w;,2)p

A completely analogous result is obtained in higher
dimensions, The shift in the unperturbed normal-mode
frequencies is given by the second term in Eq. (4.14).

For our one-dimensional model, the mean shift in
the kth normal-mode frequency is given to second
order by

w;fl N 1

A= (1 FustFuon—3 (pe—p)—— 2

wr? N k=1 [sinz(vrk1/N) - Sinz(wk/N)]P

wk —
= (Gus—Fuatiuwr Sin‘N*+% (pe—m12)wz< 2N

1 7 sin(zk/N)
(cosz(ark/N)
k=N/2

-2 sin(qu/N))k;éN/Z, (.15)

iN

where the evaluation of the sum is discussed in Appendix B. This result for Aws can be used to evaluate the change

in the zero-point energy caused by disorder

AE0=§h Z Aw;,
k

kwL w
- N—-{ Gt b= (1)

M-—————-z(Mz_M‘y}. (4.16)

M 12M 22

This expression differs from the result one obtains by keeping the perturbation in the kinetic-energy terms. The
alternative calculation is carried out in Appendix B. That the two results for AE, should be slightly different is not
surprising because of the difference in the fundamental nature of the perturbation.

At least in lowest order, the expression given by Eq. (4.12) is not the long time asymptotic solution for (Qx(t)).
To obtain the asymptotic solution, we need some properties of the function Jx(y). We establish these properties

here only in the first approximation.
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The value of the function Vi{y)={J:(y)) to lowest order is

My—Mi\*1 ~ 7k xRy
— 2 wr? sinﬁ—z—\—?—-a(w;} sin?~—--—y“’)

vk(y>=m2p<1—-z>>w(

MMy, 7 N wu=1 N
=map?p(1—pIM 2(M2~Ml)2§ fr sin% 8(wy? sin®p—y2)de
MM, T o
=wlc5’1’(1“:193-7‘4'2(312“5{1)2 z 0< |y| <wr
MM, 7 (w*—y?
=0 otherwise. (4.17)
This result, together with the fact that
Nit=|U¥ ()| = | = 23— (Ki (3D} | = 200 (4.18)
to lowest order in the perturbation, leads finally to the following expression for the damping constant I'z:
mz%ﬁ(l——?)M’( ~ ) " o<an<on
MM, 7 (0t~}
=0 otherwise. (4.19)

The constant factor p(1—p)M*(M,— M /M M,)* will sometimes be denoted by & for brevity.
We must now examine the effect of the singularities of (J«(y)) on the long-time behavior of Qi(f), since by a
theorem due to Lighthill,® the two are directly related. We expand the integrand in Eq. (4.8b) about y=zw;,

and obtain

1 tr” syt - o of OF H(wr—y)
It )(i)"‘; j;: {[Uk(wL)'*‘ié W (*—) m

2

k3

]_1+[Uk(—wa—ée2wﬁ(°—°f *M]ﬂ}d% (4.20)

27 (wpty)?

where H{x) is the Heaviside unit function. With some manipulation we obtain

1 ghent
L ()~~ Re

"

{ gLt

f e dx+
Uilwz) Yo

The correct long-time behavior of {0:(£)) to lowest
order in the perturbation is thus given by

DA w10 (0) coswrl Qk(()) sinwrt 422
(A0 e T atien 1 (4.22)

since for sufficiently large ¢ the term of O(r1) will
dominate the contribution from the terms of Qe T#ltl),
The result (4.22) in fact gives us a basis for discussing
the time interval over which our solution for {(Q.(%)),
Eq. (4.12), can be expected to hold. We write our
result for (Qx(#)) schematically as

Or()~A4 exp(— &)+ B(&/ ) (4.23)

For times such that €4~ 1, the second term is negligible

>0

®M. J. Lighthill, An Introduction to Fourier Anelysis ond
tl’x’gfssgahzegzﬁ‘umtiom (Cambridge University Press, New Vork,
s p- 52,

ek (wr/2)}

° 1 sinwri i
f xde—itedy } = + 0(_) . {4.21)
0 rUilwz) ¢ &

compared with the first term since the € factor, which
we have assumed to be small in this analysis, is un-
compensated by any power of ¢ to keep it appreciable
as I increases. For times such that ¢£>1, the second
term overwhelms the first, regardless of the magnitude
of & The approximation given by Eq. (4.12) must
fail when the two terms become the same order of
magnitude. A more accurate asymptotic expansion
may assign a somewhat greater range of validity to
Eq. (4.12); however, the existence of these correction
terms should not be ignored since they help establish,
independently of any other considerations, the time
scale for which our one-to-one correspornidence between
the perturbed and unperturbed normal modes remains
valid before they decay into more complicated states.
To conclude this section, we give a formal expression
for the damping constant I'y; for a disordered three-
dimensional cubic Bravais lattice to lowest order in
the perturbation. Combining Eqgs. (4.5), (4.10), (4.18),




NONEQUILIBRIUM PROCESSES IN DISORDERED CRYSTALS

i 260 G M()C)]
. k 1
" 2u(k; §) (]) 3N

o (])@2 w);\,k,i 5[‘“(]")"“’ ( )}

and (C12), we have

I‘kj=

(pe—m)— 2

We now make use of the result that

- p()-)

where G(w?) is the distribution function (normalized to
unity) for the squares of the normal-mode frequencies,
to rewrite Eq. (4.24) as

S
M,

o) o () o

where g(w)=2wG(w?) is the distribution function for
the normal-mode frequencies.
In the long wavelength limit, g(w)=Ce? and Eq.

(4.26) becomes
— M\ 2 k
)cw4( ) (4.27)
1M 7

(4.25)

Ta~mp(1 )JW(M2
kj 4? P MM

which is the result appropriate for the case of so-called
Rayleigh scattering.

For three dimensional lattices, for which in lowest
order g(w)« (wr—w)? in the limit as w—w;~, the
analysis leading to Eq. (4.22) predicts a long time
behavior for {(Qx(¢)) which is proportional to 2.

An alternative method of obtaining the results of
this section consists in studying the equation s>-+w®
= —Gi(s) in the complex s plane. It can be shown that
as it stands this equation has no solutions except for
values of s on the imaginary axis. However, if we
introduce the functions Gx*(s) and G~ (s), which are the
values of G (s) for Res>0 and Res <0, respectively, then
the analytic continuation of the function s?+w2+Git(s)
through the branch cut along the imaginary axis onto
the Riemann surface which is contiguous with the
surface in the right-hand half-plane upon which Gi*(s)
is defined will have zeroes in the left-hand half-plane.
It should be stressed that the analytic continuation
of Gy*+(s) through the cut into the left-hand half-plane
is not the same as G, (s) since they are defined on
different sheets of the Riemann surface. The contribu-
tion (4.22) arises from swinging the contour around the
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z-(M=C)-<C))

(4.24)

branch points at #+4w;. A discussion of this method for
the evaluation of integrals of the type (4.3) has been
given by Migdal and Galitskii.

V. OPTICAL ABSORPTION IN AN ISOTOPICALLY
DISORDERED CRYSTAL

In this section we apply the results of the preceding
sections to the calculation of the infrared lattice
absorption of isotopically disordered crystals. In this
calculation, we start with the exact expression for the
dielectric susceptibility which has been derived by
Kubo.’® As in earlier sections of this paper, we restrict
ourselves to the classical case.

The dielectric susceptibility tensor X,,(w) is expressed
by Kubo in the classical limit in the following form

Xl = lim 6 [ e, OmOM, 6.1

Where 917 is the dipole moment of the lattice, w is the
frequency of the incident electromagnetic radiation,
and { ) represents an average over a canonical distribu-
tion. The absorption coefficient is directly related to
the imaginary part of X.

Since our primary aim is to display the techniques
for calculating the susceptibility, and since the three-
dimensional case gives us nothing fundamentally
different, we restrict ourselves here, as in previous
sections, to the one-dimensional case.

For a chain of alternately charged ions, the dipole
moment is given by

N
M= 2 (—1'ewm, ($.2)

where e is the magnitude of the charge on each ion, and

N is now an even number. If we substitute for #; its
normal coordinate expansion, Eq. (2.5), we obtain

M=e(N/M)*Qu2. (5.3)

It is important to note that Q. is a real quantity,

On2=0ny2*.

The dielectric susceptibility in the present case

31V, M. Galitskii and A. B. Migdal, J. Exptl. Theoret. Phys.
(U.S.S.R.) 34, 139 (1958) [English translation: Soviet Phys.—
JETP 7, 96 (1958)].
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becomes
Ne? ol
Xzz(w)=B— lim f e @ {Qunp(0)0np (D). (5.4)
M ot J,
From the results of Sec. III, we know that we can
express Qwy2(2) as

Q2 () =In/2())Qn/2(0)+I /2 (£)Qu/2(0)
+ X (T2 ()0n(0)+ T2 (R4 (0)),

n(*#N/2)

(5.5)
so that

. Neg? ®
xa:z(w)=18({QNf2(O) § 2)“?‘5}“}}’1’0{1{-.’; e_i"’t*dfgwg(t)dtf. (56)

We recognize the integral on the right-hand side of
Eq. (5.6) as the Laplace transform of the function
Inp(t), with the customary parameter s replaced by
#w+ e This is particularly convenient for our purposes,
since it is not 7x/2(#) that we know explicitly, but its
Laplace transform, which is given by Eq. (3.9) as!

D a(s)=[Hwn+Guya(s) I $.7

If in Eq. (5.7) we replace s by sw-+e¢ and pass to the
limit as e— 0+, we find for X,.(w) the result that

Xao(@)=5(|Qn/2(0) |3

Ne? 1
X— (5.8)
M wyjt~w?—Kyp(w)+iJ N,Iz(w)

The imaginary part of X,.(w) is given by
Xeo® ()= ~B(|Qu/2(0) | %)

Ne? Jnya(w)
X— (5.9)
M [wn—wr=Kyp(w) P+T a2 w)

If we evaluate the thermal average by using the
Hamiltonian appropriate to the monatomic mean mass
lattice, then to lowest order in the perturbation the
imaginary part of the susceptibility normalized to
unit volume becomes®

Xz PH{w)
e JIwja(w)

=— , (5.10)
Magd® [wn?—w?—Kyp(w) P+T 2 (w)

where a, is the nearest-neighbor separation between ions.
The complex dielectric constant is given by

epv=6;u+4’7rxyv (CO), (5.11)
which in the present case reduces to
€zz= 140X 1p(w) =12, (5.12)

8 We associate a volume ag® with each ion.
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where

n=A+1iu (5.13)

is the complex refractive index. A is known as the
ordinary index of refraction, while 4 is the extinction
coefficient. If X,, is so small that its square can be
neglected compared with X, itself, we find that

1=27%.,2 (w). (5.14)

The linear absorption coefficient .. is now given by

zz(w)= —2{w/c)p=—47{w/c)Xz:? (w) (5.15)
w &2
=4
¢ May® ©
e . (5.16)
[(wn/otAwne)?—w? P4+yn et (w)
where
Awyys(w)=[wn?—Kyp(@) F—wypm,  (5.17a)
vrr2(w)=J n(w), (5.17b)

and ¢ is the speed of light.

Strictly speaking, the result given by Eq. (5.16) is
appropriate to a particular configuration of isotopic
unpuntles at the lattice points. What we require, how-
ever, is the average of a..{w) over all configurations of
the impurities:

e2

(taale)) = 47—
cM ao

vwy2(w)
X . (518
<[(wN,2+AwN,2(w))z—w2]2+»yN,22 (w)> )

In accord with the arguments put forth in Sec. III,
we assert that in the limit as N — « we can replace
the configuration average of the function inside the
braces by the function of the configuration averages of
the quantities Awyys and yaye:

e?

- 41r—
{aeelel)= ¢ Mag®

9 {yaa(@))
[ (wnzt (A (@)))?~ w24 (yaza(w))?

An almost identical result holds for each dispersion
oscillator in a three-dimensional crystal in the special
case of plane-polarized incident radiation.

In the application of Eq. (5.19) to the calculation of
the optical absorption in a mixed alkali-halide crystal,
it must be kept in mind that in the most usual cases
only the anion (cation) sublattice is disordered, while
the cation (anion) sublattice remains ordered. This
means that the matrix elements @ given by Egs.

(5.19)
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{2.10) become

® W M 1) [21r'i<k, k)l]
kkl=“—— — e —— —
N toad \ M, P N

wpr? M 2mi
+ > (——1) exp[—]}—(k'—k)l], (5.20)

N L even \ M,

in the case that the sublattice defined by the even-
numbered ions becomes disordered, while the sublattice
defined by the odd-numbered ions remains unperturbed.
The mean mass M is defined in the present case by

M=3M1+3[pM o+ (1—p)M3], (5.21)

where M is the anion (cation) mass, while M, and M;
are the masses of the two cation (anion) species. p
and (1—p) are the fractions of cations (anions) with
masses M, and M; on the disordered sublattice.

The configuration average of the diagonal matrix
elements is found to be

Mri1 1—-
(Br) = [—[—"‘i‘i'{- ?
2IM, M, M,

J——l ’, (5.22)

while the configuration average of the product of
matrix elements (®w/2)k:®@k/2), which is needed in
the evaluation of (Ku/2(w)) and {(Jx/2(w)), is given by

Zwk12

(@ /21 Bri(N/2)) = —EJ—V_P(I_p)M ?

M3;—M,\?
X( ), kh#=N/2. (5.23)
MM,

With these results, we obtain finally that to second order
Mr1 p 1-—p
(Knja(w))= —wN/zzl—[——-f-——-f- J—l}
2WM, M, M,

Fontp(l p)Mﬁ(Ma_M2)2
v an1 el
2WN/2 M2M3

1 wk12
X=—y

N#un (wk12—w2)p
Ms—M2)2
MM,

1
X— k1%6 (whi? —w?).
N%wl (=)

(5.24)

Unpalw))= EwNmz?(l ——p)M2(

It is, of course, clear that the problem of determining
the time evolution of (Qx/2(#)) could have been for-
mulated in an alternative way in which the unperturbed
lattice is taken to be a diatomic lattice with two atoms
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in each unit cell. One of the two unperturbed masses
would be that of the cation or anion which is not affected
in the preparation of the mixed crystal, while the second
would be the mean of the masses of the two kinds of
ions which could occupy the second position in the
unit cell. The generalization of the present formalism
to cover this choice for the unperturbed lattice is
presented in Appendix A.

In conclusion, we note that the damping constant
we have obtained in our expression for the absorption
coefficient is frequency dependent. We can expect this
frequency dependence to explain the departure of the
absorption spectrum from a pure Lorentz shape and
perhaps in some cases, even to give subsidiary maxima
in the spectrum. We have obtained this frequency
dependence by working with Laplace transforms
without making any approximations other than using
the thermal average appropriate to the unperturbed
lattice. In particular, we did not have to find the actual
time behavior of the system. It seems to be almost
essential to work with Laplace transforms in calculating
optical absorption with Kubo’s formalism if it is
desired to obtain the damping constant yy;» as an
explicit function of the frequency w in a simple manner.
This is because of frequency w does not appear in the
equations of motion for the normal coordinates and is
introduced only in the Laplace integral (5.1). Thus, if
the expression (4.12) for Qu/2(¢) were substituted into
Eq. (5.1) and the resulting integral evaluated, the
expression for X,, would still be of a Lorentz form, but
damping constant yx/; would no longer be a function of
w. This is because we have had to make certain approxi-
mations, discussed in the preceding section, to obtain
Eq. (4.12). To obtain the result expressed by Eq. (5.8),
we would have to know the exact time dependence of
{@n/2(0)Qn/2(8)) to this order. These observations
remain valid for calculations of anharmonic optical
absorption in ionic crystals, where frequency dependent
damping constants are needed to explain the subsidiary
maxima observed experimentally in infrared absorption
studies.

VI. DISTRIBUTION FUNCTION FOR THE
ENERGIES OF NORMAL MODES

In conclusion, we apply the methods employed in
this paper to the problem studied by George.?? He has
examined the time evolution of the phase-space distribu-
tion function p which satisfies the Liouville equation

1(9p/9%)= (Lo+6L)p= Lp, (6.1)

where Lo is the unperturbed Liouville operator, and
6L is the change in L resulting from the random array
of isotopic impurities. In order that L take its simplest
form, it is expressed in terms of action-angle variables,
{J+}, {au}. The distribution function is then expanded
in terms of the eigenfunctions of the unperturbed
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Liouville operator,

p= lZ}mm ({J+},1) exp[i 2 melow—wid) ], (6.2)

and the “Fourier coefficients” pyn,({Jx},f) are
shown to satisfy an equation of the form

é
5?%(3)= Z {(n|8L|n")
Xexp[it 2ox (me—m"an Jon (1),

where for convenience we have put p,=pin;). The
matrix elements in the present formulation are differen-
tial operators with respect to the action variables.®
If we replace Y #xw by @., and (n|8L|n’) by —iAV s,
Eq. (6.3) reduces to

(6.3)

a
()= =\ T Vaw expli@= ) ow (). (69)

George assumes that at time =0,
po(0)=0(1), (6.5a)

and that the Fourier coefficients p, which couple
directly to po satisfy the initial conditions

pa(0)=0Q) n#=0. (6.5b)

All other Fourier coefficients are at least of O(A2) at
t=0.
To solve Eq. (6.4), we put

pa()=a,(1)e%, (6.6)
where
2 (0)=0(1) (6.7a)
and
a,(0)=0Q) n=0, (6.7b)

for those coefficients which couple directly to ao.
Equation (6.4) becomes

dﬂ(t)+mnan(t)= —iA Zn’ Von@nr (t)- (68)

We take the Laplace transform of this equation and
find for an(s)=£{a.()}:

a.(0 )
s4-19Q,

Z Vantn (5)

6.9
L (6.9)

a,(s)=

The solution to this equation can be cast in the form

an(s)=Dn(s)an(0)+ 2 Duw(s)aw(0). (6.10)

n’ (#n)
In view of the initial conditions (6.5) or (6.7), we see
that, if we wish to obtain 24(¢) to lowest orderin X only,

s Explicitly, for energy conserving processes we have that

Ne _____ , ! ”k' a3 )
(m|sLin")= E (wnoon b 1) WPras 2Jk’+ajk EY P
X&nk,nk:’-{—iﬁnk e’ —1 XL Snpnp’.

Pk k*
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we need to consider the diagonal transitions which are
described by Do(s). With the aid of the general results
of Sec. III, we can write down the expression for Dy(s)
immediately :

Dy(s)=[s+1Q~—Go(s) 17, (6.11)

where
V0n1Vn10
Go(s)=(N)* X' ——
. 5+1ny
( )8 Z" V0n1Vn1n2Vn20 (6 12)
—( .
nine (5-+in1) (S+'Lﬂn2)

is the sum of the contributions with no intermediate
state equal to the initial state. It is again clear that
Go(s) satisfies the relation Go(iy+x)=—Go*({iy—2x),

so that
lim Go(iy=n) = FKo()+iJo(3), (6.13)
v-’

where now Ko{y) and Jo(y) are differential operators
with respect to the action variables. We thus obtain
the result that

{ ao (t) } diagonal

ds t ao (0) .

1 i est
= {— f — (6.14)
i Ve—in  5+iQe—Gol(s)

Through the use of arguments similar to those employed
in Sec. IV, we find that the long-time asymptotic form
of po(¥) is given by (recalling that Qy=0)

po(t)=ao(t)= N exp[iyot—NoKo(y0)£]po(0),
where, to lowest order in A,
. VoniVaro
i=x 2”:; (y+Qn1)p
Koy(y)=\2 % Von1Vni08 (y+ Qny)

(6.15)

(6.16)

=[1-Jd'(y)],
and ¥, is the solution to the equation
yo=Jo(¥0)- (6.17)

As long as we are interested only in the approach to
equilibrium of our system, we may neglect the “energy
shift” term in the exponential of Eq. (6.15) and write
the equation for po(?) as

(8/8)po(t)=—NoKo(y0)po() =R({Jx})po(#). (6.18)

An explicit expression for the operator € is given by
George:

g
Q=— 3  PurPprrd (wk-—w;,:)

4 rx'

(6.19)

oJr T

kl
o, oJw
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From its definition,

1 I
(0= f . f (7, an} s 0TI dex,

we see that pe is the distribution function for the action
variables of our system. Since the action variable Jj is
proportional to the energy in the kth normal mode,

Ex= Ty, (6.20)

we can equally well regard po as the distribution function
of the normal-mode energies, p({E}; ). If we assume
a factored distribution for p({E:}; t),

P({Ek} 3 i)=n fﬂ(Emt)’ (621)

substitute this form into both sides of Eq. (6.18) and

integrate over all E, save E,, we obtain the equation
satisfied by fn(Ea,f):

3 T
""fn= _annz[f%+ (En+kT)
at 2

ofn %fn
/ +kTE, !
oE, dE.?

}, (6.22)

where

Cn=2_j PriPrnd (wn—wp). (6.23)
In terms of the dimensionless variables
x=En/kT T=Cpl= t/'Tn, (6.24)

it is readily shown that the solution to Eq. (6.22)
which satisfies the initial condition

J(2,0)=d(x— ) (6.25)
is given by® ~
fn(x,f)=e‘”§ ° L (%0) L (%), (6.26)
m=0 {m1)2

where L,n.(x) is the mth Laguerre polynomial.
The mean energy in the sth normal mode Z is
given by

P f xfa(er)da=1—(1—ao)er,  (6.27)

or in dimensional variables,
(En())=kT~[kT—E,(0)Je ™.

This result shows that for any initial value of the mean
energy in the nth normal mode E,(0) the interaction
between normal modes induced by the isotope im-
purities will cause the energy to approach the equi-
partition value 2T in the limit of long times.

The results of this section, together with the one-
dimensional kinetic theory expression for thermal
conductivity,

k=3 ,C, (B)0le=25 CoPIvstlp
4], Prigogine and R. Balescu, Physica 23, 555 (1957).

(6.28)

(6.29)
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where C,(p) is the contribution to the specific heat
from the pth normal mode and v, and 7, are the group
velocity and mean free path of the pth normal mode
(see Appendix B), lead to a sum for x which diverges
at the long-wavelength limit. This divergence is
associated with the fact that in the long-wavelength
limit the disordered lattice is equivalent to a monatomic
mean-mass lattice,! and such a lattice in the harmonic
approximation cannot give rise to a finite thermal
resistance. We remark in conclusion that the chief
merit of the methods developed in this paper as applied
to the calculations in this section is the ease with which
it yields Eq. (6.18), as well as the equations for the
other Fourier coefficients.
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APPENDIX A

We derive here the equation of motion of a normal
coordinate in an isotopically disordered general three-
dimensional lattice containing N unit cells with »
atoms per unit cell.

The position vectors of the nuclei in such a lattice
can be represented as?®

x(1; $)=x(D+x(x).

Here x(1) is the position vector of the /th unit cell and
is given by

(A1)

x()=Lar+laytlxas,

where a,, a;, a; are the three primitive translation
vectors of the lattice and Iy, s, I3 are integers, positive,
negative, or zero. The vector x(k) gives the position of
the xth atom in a unit cell (x=1, 2, -+, n).

If each atom undergoes a small vector displacement
u(l; «) from its equilibrium position, the equations of
motion of the lattice can be written as

! i 4
Mxiﬁra( == Zq)dﬁ( )'Mp( )3 (A3)
K Uk’ kK" I'd

where M.} is the mass at the «th position in the Ith unit
cell, a(=1,y,5) labels the Cartesian axes, and ®qs(¥l’; k')
is a general force constant of the lattice which depends
on I and " only through the difference I~1I'. We
introduce the mean mass of the atom in the «th position
in a unit cell by

(A2)

1
= Zl M), (A4)

# M. Born and K. Huang, Dynamical Theory of Crysial Lattices
{Clarendon Press, Oxford, England, 1954), Chap. V.



362

and rewrite Eq. (A3) as

()l ()
) g () o

The normal coordinate transformation for the un-
perturbed mean mass lattice, described by the masses

M,, is given by
“()-gamz())
Xexp[2rik-x(1)]. (A6)

In this equation, k is a propagation vector whose N
allowed values are determined, e.g., by the cyclic
boundary condition, and are uniformly distributed
throughout a unit cell of the reciprocal lattice. The
index j labels the # branches of the frequency spectrum,
and e, (x| k; 7) is the @ component of an eigenvector of
the dynamical matrix whose elements are given by

A (k) 1 Se l
* xx ‘(M,‘M,‘-')* B aﬁ(mc')

Xexp[—2xik-x(1)], (A7)
where l=I—1. The {e.(x|k; 7)} satisfy the following

(NM )tk s

equations:
k k k k
z Duﬂ( ,)ea(lc' ) =w'~’( .)ea(x ) (A8a)
&' KK 7 7 7
k
> ea*(x , Jea| % ) =§; (A8Db)
e J
k k
Z 85* &’ _)ea(K _)=5n' afs (ASC)
J J J

The eigenvalue w?(k; j) appearing in Eq. (A8a) is
the square of the jth normal mode frequency associated
with the propagation vector k. The normal coordinate
Q(k; j) satisfies the reality condition

0(=k; H=0*(k; 7).
If u.(l;x) given by Eq. (A6) is substituted into

Eq. (A5), and use is made of the orthogonality of the
exponentials and the {e,(x|k; 7)}, we obtain

o) ()5 o))

where the matrix elements &(kk’; j;7) are given by

G ,
()5 G 1)

Xexp[2ri(k'—k)-x(2)]. (A10)

1 )e.*{ «
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Since the indices k and j always appear paired in
the three-dimensional formulation of the present
problem, we see that Eq. (2.7) and the results obtained
from it can be translated directly into the three-
dimensional language by replacing the single summation
index k everywhere by the pair (k; 7).

The results of this Appendix would be required, for
example, in a discussion of the lattice vibration infrared
optical absorption of Ge-Si alloys, which possess no
first-order moment by a second-order moment. The
unperturbed lattice in this case could be a monatomic
mean mass lattice each of whose unit cells contains
two atoms.

APPENDIX B

In Sec. IT we obtained the equations of motion of an
isotopically disordered lattice in a form in which the
perturbation is transferred to the potential energy
terms. This leads to a simple set of equations of motion
for the normal coordinates. However, it is perhaps
more natural to recast the equations of motion in a
form in which the perturbation is retained in the
kinetic energy terms. Although the equations of
motion become somewhat more complicated in this
formalism, for completeness we present their derivation
and a discussion of their consequences in this appendix.

We begin by rewriting Eq. (2.1) as

Mﬁz—'y(uz,,_l—ZuH-uH.l) = (M—ml)'ﬁz, (Bl)
where M is defined by Eq. (2.2). We now carry out

the normal coordinate transformation defined by Eq.
(2.5) to obtain
Ot wi?Qr= 31 S Or, (B2)
where
M—m 2mi(k' ~ k)l
Byt =— Z ( exp[ r ] (B3)

The configuration average of the diagonal matrix
elements vanishes in this formulation,

M—ml

=0. (B4)

1
Py =—2_
N

We proceed to solve these equations with the aid of
Laplace transforms as before. The Laplace transform
of Eq. (B2) is

5241, (8) — 50k (0) — £ (0) +-wi2Qgs (5)
= %: D [%qu (5) — 5Ok (0)— Qi (0) ],

or . .
5Q(0)+0Q1(0) 5Qw (0)+Qs (0)
g(s)= Dpir
524wy ? k! 524-op?
s2
Brrqir BS
s2+wk2; qu(s). (BS)
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We solve this set of equations by iteration. As in the
text, only the diagonal contribution to g(s) is non-
vanishing on taking the configuration average. We
find that

{qk<s)}a—| —~ (———

Prr 1 Pr1k

k1 dry

( q’kk}.@lclkzq)kgk
kxkz dkldkz

. ]ck (s)
= D (s)er(s), (B6)

where ¢;(s) has been defined by Egs. (3.3). We again
regroup the terms in the expansion for Di(s) by first
summing all terms in which no intermediate index
equals k, in which one intermediate index equals %,
«+ -, etc. To do this, it is convenient to rewrite Di(s) as

1 s? PBrk 1P
Di(s)=—- ____)[szz
di dy di? k1 dry
Ok 1Pr1koProk
+sty — ] (B7)
kb2 dikidko

We now introduce a function Gi(s) which is defined by
kk1 Pk Drk1PrrkoProk

sty — ..

k1 kikz dlcldkz

Ge(s)=s* Z’ (B8)

where the prime on the summations means that no
intermediate index equals k2. In terms of Gi(s), the
function Dx(s) becomes

1-Gi(s)

®k(5)=m.

(B9)

Thus, the configuration average of the normal
coordinate 'Qx(?) is given by

1 ctin gt i’
@o=— [ ‘[l‘m]

X[50:(0)+Q(0)1ds, (B10)
which yields the result that
(0x ()= 0:(0)+10Q:(0)
w? potie & k
_ et OO+ 0) ds. (B11)
2mi Je—iw Y5242~ sHGr(s))]

From its defining equation, (B8), we see that

Gr(s*)=G*(s), Gr(—9)=G(s), (B12)
so that
Jim Gu (iytm)= 8 ()% (), (B13)
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where Jgi(y) and Xi(y) are real functions of ¥, and
which, to the lowest order in the perturbation, are
given by

(.’.’lc],2
G()=2" ‘I’kqu’hk{ 1———} ) (B14a)
k (wk2—3)p
Ki(y)=m sgny > wk1 2Pk Drykd (wki2— y2). (B14b)
k1

With the aid of the convolution theorem for Laplace
transforms, we can write

(0:() = 0x(0) +0:(0)— 4204 0) f (=t (h)dh

—w2Qu(0) f (= F@dh,  (BLS)
0

where
F(t)=& s> +w2—s¥G(s))} . (B16)
The function F(#) can be obtained in the large ¢ limit
by writing it as
F()
1 p> dy

= | e . (B17)
21 0 =yt {Ge ()3 ()]

By expanding the denominator of the integrand of the
integral in Eq. (B17) about the values of y for which -
the real part vanishes, we have

1 i N
FO)~—3 | en—" 4y  (B18)
vk Vo Y=y t+il
where
N t=— [ 1—(ge(3)) ]+ 33X J’ (3)) <O
for y:>0, (B19a)
=3 Ny2(Ke (yx))- (B19b)

To lowest order in the perturbation, y; is given by the
solution to

wk12
V2= W2 3 (Prk1Dr1k) { i—— i ,
) k1 (we>— )P
ie.,
wk12
yi=wi? w3 (‘I’kkl@klk){ 11— }, (B20)
ky (wkﬁ—wﬁ) P
or
wk12
Vo= iwkl 143 Z’(@kk@qu}[l———————] } (B21)
k1 (wk2—wd)p
The evaluation of F(£) proceeds as follows:
F() AL fw ”
~ —_ e
dr J_o
{ 1 1 }d
X , ; y
y— |3 —i|Te]  y+[3| —4[Ts]
(B22)

= | Ny|e~ 1™ sin| y; | ¢.
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In what follows, we omit the modulus symbols and understand that it is the magnitudes of the various
quantities which enter into our expressions. After an integration by parts we have

<Qk(t>>=Qk(0){ 1—e? f tF(h)dtl}-l-Qk(O)lt—w:c’ f ) <z—n>dt1}

2

=0, (0){ 1+
Q(){ k+y

2N Ty
+ e T sinyyt | +———
yk2+rk2

~Qu(0)e Tt cosyrt+ Qi (0)e ™ sin(y)/y] Twl K1,

a result which is much more complicated than that
obtained in the text, Eq. (4.12).

For a one-dimensional lattice, we can obtain y; to
lowest order in the perturbation. Since it is readily
shown that

1 (Mi~Ms)? 1 :
(‘I’kk1¢’k1k>=ﬁﬁ(1—P)T=EP(1fP)M, (B24)
we have from Eqgs. (2.8) and (B21) that

1 . (1—p)u?
V=) ZNIJ Pu
N in?(rk/N
X 3 sin'lek/ W) . (B25)

k=1 [sin*(wk;/N)—sin¥xk/N)]p

It turns out that, at least in the one-dimensional case,
it is not accurate enough to replace the sum in Eq.
(B25) by an integral in the limit as N — «, so that
we must evaluate the sum exactly. This is a reasonably
straightforward, though tedious calculation, which
yields the result that!

:I“l

7l'k1

[ ( sml——— sm2
k=1

N 2rk 2rki\ 1
=23" (cos-———cos——
k=1 N N
2 cos(2wk/N)
=———— Ek=N/2
sin?(2xk/N)
= 1N E=N/2, (B26)

where the double prime on the second sum in Eq.
(B26) excludes the values ky=% and k;=N—#. Thus,

Ny
[y;, (e7T* cosyit— 1)+-Tre T* sinyut | } +@:(0) { t+1¢

2

T 2I:yk (e~ T*t cosyri—1)
Vi 3

[y (1— 7T cosypt) — The~T# sinyil |

kawk2
[yute Tt cosyt— (1 —Twl)e Tt sinyet ]
Y2+ T2
(B23)
we find that
Vo= wy+Awy,
7k wr (1= p)u
=g sin———p ©
LT T?
mk 1—2 sin2(wk/N)
Xsin— ———— ' penN/2
N cos¥(wk/N)
=wp+ (wr/6)p(1— p)Np? E=N/2 (B27)

to second order in the perturbation. The correctness of
this result can be verified by computing the zero-point
energy of the disordered lattice. This is given by

Ey=E9+AE,= %ﬁ Zk (wrtAwy)

wk
— (11— ! gin—
sin~ + ?( — Pt T sin ¥

k=1

N
=3hwr 2 s
k=1

1-2 cos2(1rk/N)*  honp(1—p) N
T (4] - me,
cosatyNy | ebiTr

(B28)

where the prime on the second sum excludes the value
k=N/2.

The first sum, which gives the unperturbed zero-point
energy, is readily found to be 2N/r in the limit of
large N, so that E¢@ = N#w./x.

The change in zero-point energy AE, can be expressed
compactly as

ABo= Es®p(1—p) [2 o Sm(ﬂk/N)] (52
o=E, P 20 3 N2i=1 cost(mk/N)

where the prime on the sum excludes the value 2=N/2,
and where we have neglected contributions of O(1/N)
relative to the terms retained. The sum is evaluated by
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contour integration with the result that

X sin(wk/N)

1
o =— (B30)
N2 k=1 cos?(wk/N) 3

Our final result, then, is that

AEy=E® (r/8)p(1—p)u?, (B31)
in agreement with the results of earlier calculations.®
Thus, in spite of the unphysical divergence in the
dispersion relation’ (B27) in the short-wave limit,
which had been discussed previously by Rubin and
Fleishman® for a chain with fixed ends, we recover
the correct expression for the change in zero-point
energy of a disordered linear chain. This result confirms
the correctness of our basic theory.

To conclude, and for completeness, we calculate the
mean lifetime and mean free path of a normal mode for
the present model. The former is given by

| =
w1 — (g T— g ()
y:>0

< 1 0% (Y1)

~ YK (96)) ~ Jor( K (wr)), (B32)
tojlowest order in the perturbation. With the aid of
Eqgs. (2.8) and (B24), we have that

1 r 1
<~> =—w—p(1—p)u* X' w6 (wki®— wi?)
Tk 2 N k1

n

Wi
‘*“?(I—P)#zf wr?
2 0

Xsin’pd (wz? sin’p—w? sin’py)de
=3p(1—p)u [/ (wr?—w?)}] 0L wp<wr
=0 otherwise

= (x/4)p(1— pluer’g(wr), (B33)
where g(w) is the frequency distribution function for
the unperturbed one-dimensional chain. This result,
Eq. (B33), is in agreement with the results of George.®®

The mean free path of a normal mode is defined as
the group velocity of the normal mode multiplied by

(1;“5 i.) Prigogine, R. Bingen, and J. Jeener, Physica 20, 383, 516
37 R. J. Rubin and B. A. Fleishman, Phys. Rev. 99, 656 (1955);
private communication.
3 Strictly speaking, the result obtained for (1/7x) by George is
twice that given by Eq. (B33). This is due to the fact that he
considers the decay of the energy in the kth normal mode, and

this is related to |Qx|2 and |Q]? (see Sec. VI).
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the mean lifetime of the mode:

L(r/9)p(1—p)utan’g (wn) I~

wk
cos—
N

i)c:—w],
2

Qo sz—wkz
wi? p(1—plu

=0 otherwise,

0L wr<wr

where @, is the nearest neighbor separation. A similar
result has also been obtained by Travernier.®

APPENDIX C. EVALUATION OF THE
AVERAGE MATRIX ELEMENTS

In this Appendix we evaluate average matrix element
expressions of the form

(Prkr), { Pk Priks),

These are required for the computation of {(Gx(s)). In
performing the averaging, we assume that each lattice
site is occupied by a particle of mass M with probability
p and by a particle of mass M, with probability
g(=1—49). This same set of probabilities is associated
with each lattice site, and all sites are independent.

Each perturbation matrix element in the expressions
we wish to average contains a sum over lattice sites.
As a result, each expression contains a multiple sum
over lattice sites. We separate the terms in this multiple
sum in which two or more summation indices refer to
the same lattice sites from the terms in which they
refer to different sites. In the second case, the separate
sites are occupied with independent probabilities,
while in the first case only one probability is involved.
As long as we know that different summation indices
always refer to different lattice sites, we may take
independent averages at the sites associated with
different indices.

Consequently, we split the multiple sum into a sum
with all indices unequal to each other, plus sums with
two indices equal in the various possible combinations,
plus sums with three equal, plus sums with two pairs
set equal separately, and so forth, down to a single sum
with all indices equal. In each sum, indices which are
not explicitly set equal are restricted to be different
from each other. We may now average each sum over
the quantities associated with each index separately.

Taking these averages leads to a great deal of
simplification because, on the average, each lattice
point is like any other and most of the position depend-
ence disappears. By adding and subtracting terms, we
can express the lattice sums in terms of various combina-
tions of Kronecker &’s.

The general procedure is made quite clear by
examples. We restrict ourselves here to the linear

(Brke1®r1ksPhoks),

chain, although the method is applicable to lattices

® J. Tavernier, Compt. rend. 245, 1705 (1957).
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of higher dimensions. We begin by obtaining the
configuration average of the matrix element ®x; which
is given by

wk? N Zﬂ(k—kl)l
<I>kk1——]7 El (—— 1) exp[—-—T——]. (Cy)

Since the operations of summing over and averaging
over the configuration of the masses at the lattice
points commute, we obtain

<¢kk1>=%f[p(§;—l—1)+(1—p)(%—1)]

2mi(k— kl)l]

X‘Eexp[— N

i=1
=k 2uiA (k“kl), (CZ)

where we have put

w{ G+ Ge)

M n
+a-p(-1), ©
and ’
1~ 2t (k— k1)
A(k—k1)=-—A—TZ exp[—Tl]

I=1

1 if k=% (modN)
{ (Ca)

0 otherwise.

For the average of the product of two matrix
elements; we have

= (L) (520))

2me
Xexp[ —-]—V—[(k—kl)j+ (B1— ko)l ] } (C5)

Here we split the sum into two sums with j=/ and
j##1, respectively: .

(@kk],@klkz)

- £ () ol ]
= (E)E)

><exp(—;[(k—kl)mkl—kz)zj)}. (co)

MARADUDIN, WEISS,

AND JEPSEN

Each term in each sum can be averaged separately,
and in the second sum we find that the average at
point j is not affected by the value of /. This would
not be true if / were allowed to equal j. Averaging gives

(Bt Prykg) =

whiZwks® [
=1

pe 2 eXP[———(k k2)]]

' O .
et T exp( = L—h
it N

(G #D)

+(k1—k2)£]) } 1

We introduce the j=1 terms into the second sum and
subtract them off again from the full expression to
obtain finally

1 .
(‘Dkkﬂ’klkz) = Wiy 2wke? E (#2'“'[112) +y 12A (k —k 1) }

XA(k—ks). (C8)
The averages of the products of more ®’s become
complicated, though the method is the same. For the
product of three ®’s, we obtain

(Prk1Pr1k:Dhoks)

1 1
= wk12wk22wk32{ “—M3+l42141[—A (k1—k2)
N? N
3 1 1
———+—A(ky—k3)+—A(k— kl)]
N2 N N
1
+m3[A (=BG = —AGe—H)

——1—'A(k —k )+i]}A(k—k ). (C9)
I 2~ K3 I 3/

Most of the terms in these expressions do not make a
contribution to {Gx(s)). We note that every average
will be zero unless the initial and final wave vectors on
the two ends of the expression are equal to each other.
On the average, there are no off-diagonal contributions.
This is a perfectly general result, valid in all orders of
the perturbation. It follows from the translational
invariance of the mean-mass lattice after the ensemble
average over all configurations has been taken. The
result

<(I’kqu>k1k2> = (1/]\7)(&%12(4”::2‘z (ﬂg—[llz) A(k— kg)

is our analog of Van Hove’s ‘‘diagonal singularity
condition.”®

“ L. Van Hove, Physica 21, 517 (1955).
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It must be mentioned that had we defined the mean
mass M by the relation

1 9

M M
rather than by Eq. (2.2), the results of this Appendix

-2

1-p
M,
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would have simplified greatly in that all terms involving
u; would vanish identically. The motivation for the
choice of the definition (2.2) for M is discussed in the
Introduction.

We conclude by calculating (@rr:®ruk) explicitly for
a three-dimensional cubic Bravais lattice. From Eq.
(A10), we have that

() )

Xea(l;)ea(l;)e,a(l;)eﬁ(];’) exp{2mi(k'—k)- [x(l)w;(lf)]} (C10)

_ (ks e’ 57
N2

w(k; (k5 7) k
= N (uz—u12)[e(j)
Now, [e(k; 7)-e(k’; )] is a quadratic form in the
components of e(k; j) which has cubic symmetry. A
quadratic form which has cubic symmetry must be
isotropic, so that we can replace [e(k; 7)-e(k’; 7)
in a sum over k' and j’ by %. Thus we have finally

O

+ot(k; HutAK —k)d;;.

APPENDIX D. USE OF THE RESOLVENT METHOD
ON THE DIATOMIC LINEAR CHAIN

(C12)

To clarify the effect of our assumption of a random
distribution of isotopic defects, in this Appendix we
apply the formalism of the preceding sections to the
case of an ordered diatomic lattice. For simplicity we
restrict ourselves to the one-dimensional case. In this
case, the unperturbed normal-mode frequencies are
given by

wd=o:?sint(zk/N) (k=1,2,---,N). (D1)

The parameter oy is the maximum normal-mode

frequency of the monatomic mean-mass lattice,

wil=4y/M, (D2)

where v is the force constant for nearest neighbor
interactions.

We assume that all the even-numbered lattice points
are occupied by masses M,, while the odd-numbered
lattice points are occupied by masses M. The expression

(k
-e "
J

—(Nurrt Vi’ A —K)A(k~K) = Nur?)

(5o

2
)] bk AR Kb

z

(C11)

for the matrix elements & reduces to

_ow 2ri(k' k)l
o= () Bl

+ (1 —_) : oddexp[hi (}j’\"_ k)l] } ®9

We put N=2K and sum the resulting expressions to
obtain

A —E)

e ==

wpr® { M—

1

My—M, mi(k —k)
+ '—k):, (D4
2M. exp[ K ]A(k )} 04

where A(F'—Fk) has been defined in Appendix C, Eq.
(C4). In the present context, the N appearing in
Eq. (C4) is to be replaced by 2K.

The diagonal elements

wi? (M1—M>)?
(7

— (DS)
4 MM,

can be absorbed into the left-hand side of Eq. (2.7)
by defining a new frequency @ by

(M+M,)?
o ¥

2= . (D6)
AM M, .
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The off-diagonal elements can be expressed as

M,—M,
My+M,

Since both & and &’ are restricted to the interval (1,2K),
this expression gives all the nonvanishing off-diagonal
elements. With these simple matrix elements, the
expansion for the function Gy (s) is found to be

Vi Vieys
Gils)=— %' ———
ok sS40

B = Vi =90 Grprrx+0000—x), 1=

(D7)

Ve Vg Vkok
kikz (§24Qk12) (s24-Qre?)

and can be seen to terminate after the first term, For
example, in the second term, if the index % lies in the
interval 0<k<K, it is linked by a nonzero matrix
element only to the index ki=%-+XK. The index %; is
also linked to only one index for which 0<%k<2K,
namely, k.=*k. However, the second summation index
k2 cannot be equal to & because this is explicitly excluded
in the definition of Gx(s). Hence, this second summation
is vacuous and this term in the expression for Gi(s) is
zero. A similar argument holds for a % in the interval
K< k<2K, and the higher terms in the series are zero
in the same way.

In the following, we shall assume that 0<2< K and
write an index in the upper half of the 2K range as
%+ K. The two normal modes with indices % and 2+ K

(D8)

WEISS, AND JEPSEN

are naturally associated with each other. The functions
Gi(s) and Gy x(s) are given by

VersxVirk, Qe 2%
Gels)m — BT HHEE 2T (Doa)
24 &2 24+ x?
—VirgiVisrrx 0 &2
Giix(8)= = ~pt . (D9b)
5242 s3p-?
We note from Eq. (D6) that
=02+ &2, (D10)
where
Qr2=[(M1+M)*/AM M Jor? (D11)

is the maximum frequency of the alternating diatomic
lattice which we are studying. The equations which
give the poles of D;(s) and Dyx{s) both turn out to be

(4 ) () =% &®; (D12)
this gives
2

L kP
§2= (iw:k)2=-—2—{ -—1:1:[1—— (1—9% sinz-ﬁ] }, (D13)

which is the usual expression for the dispersion relation
of the alternating diatomic linear chain.

The expansion for Dy,(s) also breaks off after the
first term so that the off diagonal contributions are also
very simple. These expressions have the same poles as
Dy(s) and Dy x(s). The final expressions obtained for
gr(s) and ¢z g (s) are

(52 4y £H)[50x (0) +Qe(0) J— 1%t £2[50+ x (0) +Qus x (0) ]

gu{s)=

(524D 7 (240 — 1?0 ey &°

3

(D14)

grrx ()=

(2+ %A [5Qe+x (0)+ Qi (0) ] — 1% [50:(0) + Q1 (0) ]

(S 2+Q;,+ KZ) (32+Qk2) — 7}291,291‘-4. K2

The inverse Laplace transform of g (s) is easily found to be

Wy 2=y 2§}
Qk(t)=—+-———~—~( 0x(0) cosm+t+Q ) smw+t) +(:~—'~—]i+-—[Qk(0) cosw_t-l-Q 0 )sinw_t]
wyi—w ? wy By ? w_
Qrp 12 0 0
.;_l..":‘”ff__[gm(o) cosw+t+Qk+K( >sinw+t]+ (QM(O) cosw_z—!—Q =0 sinw_t), (D15)
0).*.2""0).._2 Wy ~—w+ [

where s=-tw, and s=oiw_ are the four roots of
Eq. (D12). The corresponding expression for Quix(#)
is obtained by replacing & by 2+XK and 24K by &.
We see that, as a result of the interaction ®y, the
coordinates Q) and Q. x no longer describe dynamically
independent modes of motion, although they are
still not coupled to any Q corresponding to wave
vectors different from % and A-+XK. The normal co-
ordinates for the alternating diatomic linear chain

associated with Qr and Qxy x are the two linear combina-
tions of Oy and Qrrx which oscillate independently at
the frequencies w, and w_. The first is in the optical
branch and the second is in the acoustical branch.
We can obtain them by performing the transformation

£+ =Cr{n%’ Ot Qi £ — w0 1) Qr-x}

(1000 @it —wi) ), O
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where Cy and (.. are constants chosen to make the
coefficients in the kinetic energy unity.

It is interesting that we have been able to obta,m
the normal-mode frequencies by looking at only the
diagonal part, and also that we have been able to
follow the development of the motion in time without
transforming to normal coordinates and thus have
avoided a certain amount of complication. This
procedure should also work for periodic lattices with
several kinds of atoms arrayed periodically but in a
more complicated way.

We may extrapolate qualitatively from these results,
at least in lowest order, in the following way. It is not
difficult to show that (®rx®kk) is essentially the
Fourier transform of a correlation function for the
relative separations of pairs of impurity atoms in the
lattice.* As long as the order in the lattice is sufficiently

4 R. Zwanzig (private communication).
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longranged that the average product (Prxi®rik) is
nonvanishing for only a finite number of values of %,
for a given value of &, the expansion for Gi(s) will
terminate after a few terms. This is a result of the
difficulty of forming a product ®rk®riks-- -®rk in
which no intermediate index can equal & with only a
few nonvanishing matrix elements. The equation
s*w?= —Gy(s) for the frequencies of the perturbed
lattice becomes an algebraic equation of (perhaps) high
degree, whose various solutions will correspond to the
various branches of the frequency spectrum. In such
cases, dissipative effects are not expected. In the
opposite case, where the range of order is so short
that there is essentially an infinity of nonvanishing
products (®xu®rx) for a given &, which is the case we
have considered, we have seen that dissipative effects
arise. A quantative discussion of the relation between
the extent of long-range order in the lattice and the
occurrence of dissipative effects has been given by
Zwanzig®
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A previous paper [A. A. Maradudin, G. H. Weiss, and D. H. Jepsen, J. Math. Phys. 2, 349 (1961)] has
shown that approximate normal modes of isotopically disordered crystals decay irreversibly when the
arrangement of isotopes is completely random. These results are generalized to crystals with an arbitrary
degree of order. In particular, it is shown irreversible behavior occurs whenever the spatial correlation
between isotopic species extends over a fixed finite range, as the size of the crystal tends to infinity.

RECENT treatment, by Maradudin, Weiss, and

Jepsen,! of nonequilibrium processes in isotopic-
ally disordered crystals suggests the following question.
How can one describe the transition from reversible
behavior in an ordered lattice to irreversible behavior in
a disordered lattice? How much disorder does one
need for irreversibility? Maradudin, Weiss, and Jepsen
have treated the two extreme cases of perfect order
and complete randomness in their article; we shall
fill in the middle here.

"QOur answer is that irreversible behavior occurs
whenever the correlation between isotopic species has
a fixed and finite range as the size of the crystal tends
to infinity. If the correlation extends over a region
that grows in size as the size of the crystal grows,
reversible behavior occurs instead.

Our answer is correct to the same order of perturba-
tion theory as the results of Maradudin, Weiss, and
Jepsen, having been found by essentially the same
methods.

In order to avoid duplication of material, we shall
copy some pertinent equations from I, with just
enough discussion to define the symbols.

We study a one-dimensional crystal, with one atom
per unit cell, and with periodic boundary conditions.
(There does not appear to be anything significantly
different about three-dimensional crystals as far as
the present discussion is concerned.)

The displacement of the atom at the jth lattice site
from its equilibrium position is #,. Its mass is m; The
index j runs from 1 to V. Each atom interacts only with
its two nearest neighbors; the force constant is .
Therefore, the equations of motion are

™

In I, the properties of the lattice with an arbitrary
mass distribution are related by perturbation theory to
those of an average lattice, in which each mass m; is
replaced by the average? mass M,

m b=y (i1— 205+ 051).

1w
M={(m)=— E m;. (2)

1A. A, Maradudin, G. H. Weiss, and D. W. Jepsen, J. Math.
Phys. 2, 349 (1961), preceding paper (hereafter referred to as I).
2 Maradudin, Weiss, and Jepsen average over an ensemble of

The frequency spectrum of the average lattice is
given by

wy=wz|sin(wk/N)|, 3
where wz is the maximum frequency
wi= (4y/ML. C)

The normal coordinates of the average lattice are
Or. They are related to displacements by

(N]lll)* Z Qs exp (zjz%rk_]) '

)

=

In the arbitrary lattice, Qi is no longer a normal
coordinate. However, it is still by definition a Fourier
component of the displacements. In a perturbation
theory, where the arbitrary lattice is assumed to be
close to the average lattice, the Fourier components Q
form a logical basis for studying dynamical behavior.
They are “approximate” normal coordinates.

In terms of the Qk, the equations of motion of the
arbitrary lattice are

Ostwi2Qi=— 1 BurrQir.

The “perturbation” & is

5 _wk,2 M 1) 2 yenil- @
kk'—‘zr]__z (_“ exp[—&—( - )]]:

i m;

(6)

it is proportional to the (k’—#k)th Fourier component
of the distribution of (1/m;)— (1/M).

Because the equations of motion are linear, Qx(#) is a
linear combination of the initial values Qi (0) and

Qk' (0);
()= r {Au (O (0)+Bu ()Q:(0)}.  (8)

We follow Maradudin, Weiss, and Jepsen, and consider
the evolution of a particular component Qx(#), but we
assume that only the same component is excited
initially. Then we are interested only in the diagonal

crystals having a completely random mass distribution. We
prefer to consider a single crystal, to interpret the symbol ( ) as
an arithmetic mean over the lattice sites, and at the end to
invoke the law of large numbers. The difference is mainly one of
point of view, and will not affect results.

370
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elements of 4 and B. These are related by
B () =An (0. ©)
It is shown in I that
ebioe e

Akk(t)EIk(t) =

WY v gito

ds——— (10)
2+ +Gi(s)

where ¢ is any positive number. It is also shown there

that the first two terms in the perturbation expansion
of Gi(s) are

P Prrsc
Gk (S) = @kk_ Z
O R e

(11)

This is the starting point for our discussion of the
effects of long-range order.
The first-order term in G; is simply?

D= (M /m)~1). (12)

The second-order term, which we shall call AGk(s), is

: DrrrDrerse
AGi(S)=— X
K5tk $2 4o

w;;zwkrz 1

()
S2+wk:2 i #

X 1) [2 .(k’ k) (5 ")] (13)
r————— e [u— — — .
Xp ¥ J—3J

mj

ek N2

Because of the periodic boundary conditions, the
sums over j and ;' can be replaced by sums over j and
= j'— 4. Then we obtain

AGH( wifwp? 1
- S) - kék Sz+wk12 _J; ZV: (y)

% [ Zm'(k,
exp| —— (k' —
N

L

k)v], (14)

where R(») is an autocorrelation function of the mass
distribution,

w22 () ()
()

It will be convenient to separate R(») into two parts,

R(»)=Rot+Ri(v), (16)

()

(15)

where

an
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w0~ (-GG

The part R, is independent of » and does not contribute
to AGx(s) because

and

1 2mrs
> }; Ro CXP[—F(k’—k)V]=ROBkk'; (19)

and because we need only k%', So we shall drop R,
entirely.

It will be convenient also to factor out the term
Ry(0), and to define a function g(») by

Ri(v)=R:i(0)g(»). (20)
The term we have factored out has the value
M M\ \?
={{—(— . 21
ro<((-())) @

In the limit of an infinite, completely random lattice,
Ri(0) is the same as the ¢ in I [following Eq. (4.19)].
The function g(») is so normalized that g(0)=1.

R(v), or g(v), is all one needs to know about the mass
distribution as long as second-order perturbation theory
is sufficient. Let us see what it looks like in several
instances.

If there is no correlation at all between different
lattice sites, then g(») vanishes? except for y=0,

g(»)=du. (22)

Suppose that the lattice is perfectly ordered, as for
example ABABABAB- - -; then

(M/m;)—(M/m;)

merely changes in sign as one moves from one lattice
site to the next, and evidently

ge)=(=1 (23)

If the ordering process involves nearest-neighbor
interactions of the kind that occur in the one-dimen-
sional Ising lattice, then in the limit of an infinite
crystal,

g(v)=(—tanhJ/RT)P*. (24)

The interaction energies of neighboring pairs 44, 4B,
and BB are +J, —J, and +J; kT is Boltzmann’s
constant times temperature. At zero temperature (and
positive J), Eq. (24) reduces to Eq. (23). At infinite
temperature, the completely disordered lattice is
obtained.

3In a finite lattice this is not strictly true. According to Egs.
(18) and (20), Zg(»)=0, while we have asserted by Eq. (22) that
Zg(v)=1. The reason for the discrepancy is that in a finite lattice
g(») will be of order (1/N) for »s<0. There are N of these terms,
and their net effect is to cancel out g(0)=1. Later it will become
clear that this uncritical passage to the limit of an infinite crystal
does not cause any trouble,
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In the notation we have just established, the function
Gi(s) 1s

Gi(s)=((M/m)— Duw2+AGi(s); (25)
' 1 wiZwp?
AGi(s)= —Ry(0)— v
(s) ( )N kék s Zv: g

2wt "
xexp[—7V—< —k)u]. (26)

On using this, we have to calculate the inverse Laplace
transform in Eq. (10) for various g(»).

The method of Laplace inversion used by Maradudin,
Weiss, and Jepsen depends critically on the singularities
of Gi(s) in the complex s plane. In a finite crystal, Gi(s)
has simple poles at s=d=4wi, 2V in number, and they
all lie between —iwz and +i4wz. In the limit of an
infinite crystal, these poles become densely distributed
in the interval, and Gx(s) approaches a function having
a branch cut from —iwy to +-iwz, provided that the
coefficients

27t
== 5 g0 exp[—y(k'—kw] @)

do not vanish for too many values of k¥'. If the number of
values of 2’ for which they vanish approaches N as N
becomes infinite, then the branch-cut method will not
work.

For example, if the correlation function g(») is
significant over a range of » that is proportional to N,
then f(k'—k) will be of order N for a few values of
k', and it will be otherwise negligible. The factor 1/N¥
at the front of AGi(s) will have to be combined with
f(#’'—k) as N tends to infinity. It cannot then be
combined with the sum over %/, but the sum over &’
will in this case contain only a few values of 2’ anyhow.
In other words, Gi.(s) will have only a few simple poles,
on the imaginary s axis, in the limit of an infinite
crystal. The inverse Laplace transform J;(¢) will show a
rather simple periodic behavior, without irreversibility.

If, on the other hand, the correlation function g(»)
has a fixed and finite range as N tends to infinity, then
f(k'—k) will be of the order of unity for roughly N
values of £”. The factor 1/N at the front of AG(s) can
be combined with the sum over &/, and the sum over
&’ approaches an integral as N tends to infinity. This is
what gives rise to the branch cut and to irreversible
behavior.

In the latter case, where g(v) has a fixed, finite range,
application of the formalism in I is straightforward.
There it is shown that for times ¢ that are not too long,
I.() is approximately

Ti(8)~Nie T sinyit, (28)

ZWANZIG

where Ny, T, and ;. are real positive constants. Since
our main interest is in the irreversible character of
I(t), we shall focus attention on Iy and ignore the
other constants.

On applying the prescription given in I for calculating

I':, we find
2

I‘ 1R 0 W' 221rk
v=3Ry( )—-————2 }Z g(») cos "

w[,2 — Wy v

(29)

When the lattice is completely disordered, so that Eq.
(22) applies, we recover Eq. (4.19) of L.

When g(v) is the correlation function corresponding
to the Ising interaction, Eq. (24), then the sum over
v is elementary. We get

1 cos20—x
> g(») cost=—tx——  (30)
v 1—x 1—2xcos26+4*
using the abbreviations
= —tanhJ/kT (31)
and
6=2x(k/N). (32)

As the temperature tends to infinity, x tends to zero,
and we again recover the result of Maradudin, Weiss,
and Jepsen for the completely random lattice.

More interesting is the behavior of T'x at low tempera-
tures. We shall assume that J is positive, so that the
preferred configuration is ABABAB---. Then
approaches —1 at low temperatures. According to
Egs. (29) and (30), T is proportional to z+1 when
x+1 is small,

T'y~1—tanh(J/kT)~exp(—2J/kT), (33)
so the rate of decay of Qi vanishes as the temperature
drops. There is, however, one expection: if 14co0s26=0,
then the rate of decay diverges at low temperatures.
This happens for values of £ such that

k 1
lim —=4-—,
N 7 4

(34)

The corresponding Fourier components are actually
normal modes of the perfectly ordered ABABAB
lattice, but they are very special ones in that appro-
priate linear combinations of Q and Q_; can be assigned
to either the optical or the acoustical branch, with
different frequencies. Because of this, they are abnor-
mally sensitive to flaws in the ABABAB order. This
is why they decay so rapidly at low temperatures.

All other Fourier components damp out very slowly
at low temperatures.
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New results concerning the statistical dynamics of a heavy particle in an #-dimensional (zD) cubic lattice
are presented. It is demonstrated that this model exhibits many properties which are familiar in the
phenomenological theory of Brownian motion. In a well-defined sense, the random thermal motions of a
heavy particle in a 1D lattice and a 3D lattice are accurately described by Kramers’ equation for a free
particle and a harmonically bound particle, respectively. A related, but not independent, result is that the
velocity »(#) and position % (¢) of a heavy particle in a 1D lattice and a 3D lattice constitute two-dimensional
stationary Gaussian Markoff processes. It is definitely established that in the case of a 2D lattice the
stationary Gaussian process {v(¢),% ()} is non-Markoffian. In the course of the analysis, several interesting
connections between solutions of the discrete lattice equations of motion and solutions of the corresponding
continuum equation of motion (the #D wave equation) are uncovered.

I. INTRODUCTION

HE purpose of this paper is to present additional
results concerning the statistical dynamics of a
heavy particle in an #-dimensional (#D) cubic lattice.!
The principal objective of the work reported here and
in I is the investigation of a mathematically tractable,
nontrivial, many-body system which can serve as a
model for the study of Brownian motion. One such
system satisfying these requirements is a modified #nD
simple cubic lattice with nearest-neighbor central and
noncentral forces. The modification is made by increas-
ing the mass of one of the lattice particles to a very
large value. The classical equations of motion for the
system can be solved, and the velocity and position of
the heavy particle can be expressed as linear combina-
tions of the initial positions and velocities for the entire
system. Only one statistical, or nonmechanical, element
is introduced: the initial positions and velocities are
assumed to be canonically distributed as in thermal
equilibrium. On starting with this assumption in the
present paper, the rth-order probability distribution
function W,(vo,u0,b0; = * * j Vro1, %r_1, tr—1) 1is obtained
which expresses the joint probability of finding the
velocity v and position % of the heavy particle in the
ranges (v, voFdvo; o, %ot+dmo), -+, (v, Vr_1+dVry;
Wr_1, Ur1+du.1) at the successive times #o, « -+, 1.
In addition, the time dependence of the parameters in
W, is examined in detail for the 1D, 2D, and 3D
lattices. Conditional probability distribution functions
(pdf’s) are also obtained. For example, P (v1,%1,¢1 | vo,%0,t0)
expresses the conditional probability of finding the
velocity and position of the heavy particle in the ranges
(v, v1+dvy; %1, u1+du,) at the time ¢; when the velocity
and position were in the ranges (vo, vo=+dvo; %0, %o+du0)
at the time #o. The conditional pdf P(v1,%1,1]vo,%0,t0)
is of considerable interest because the same type of
distribution function is sought in the phenomenological
approach to the problem of Brownian motion starting

1R, J. Rubin, J. Math. Phys. 1, 309 (1960), hereafter referred
to as I.

with the Kramers’ equation.?™* Only one pdf was
obtained in I, namely, P (v1,£; | vo,f0). The time-dependent
parameters of this distribution were determined for
the 1D and 2D lattices only.

Instead of repeating the type of analysis used in I
to derive the pdf’s in the present paper, we make use of
known results concerning the properties of multivariate
normal pdf’s.> A basic feature of the work presented
here and in I is the linearity of the equations of motion.
Thus, the position and velocity of the heavy particle
at time # can be expressed as a linear combination of
the initial conditions of the entire lattice. Assuming that
the initial positions and velocities of the lattice particles
are canonically or normally distributed as in thermal
equilibrium, it is a routine matter to obtain the pdf of
a set of linear combinations of initial conditions such as
W (vo,0t0; +* 5 Vo1, Ury bra).

Section IT contains a description of the lattice model
and a summary of the results obtained in paper I
which will be needed. In Sec. III, the various pdf’s are
obtained. In Sec. IV and V, the time-dependent
behavior of the pdf’s is considered in detail for the 1D,
2D, and 3D lattices. It is shown that in a well-defined
sense the random motion of a heavy particle in a 1D
lattice and a 3D lattice is accurately described by
Kramers’ equation for a free particle and a harmonically
bound particle, respectively. In Sec. VI, the lattice
model of Brownian motion is considered from the point
of view of the theory of stochastic processes. It is
shown that in the case of a heavy particle in the 1D and
3D lattices, the velocity v(f) end position u(t) fogether
constitute a two-dimensional siationary Goussian Markoff
process. These results are not independent of those in
Sec. V. On the other hand, in the corresponding case of
the 2D lattice, v(t) and u(t) constitute o two-dimensional

2 H. A. Kramers, Physica 7, 284 (1940).

8S. Chandrasekhar, Revs. Modern Phys, 15, 1 (1943).

4M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys. 17,
323 (1945).

§T. W. Anderson, An Introduction to Multivariate Statistical
Analysis (Jobn Wiley & Sons, Inc., New York, 1958), Chap. 2.
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Gaussian process which is not M arkgffian. These different
types of statistical behavior are related to the different
effective (or collective) dynamic properties of the
lattice medium with which the heavy particle interacts.

II. SUMMARY OF SOME PROPERTIES
OF THE MODEL

The pertinent results in I which will be needed will
now be summarized. The system considered is 2 modi-
fication of a uniform #D cubic crystal lattice with
nearest-neighbor central and noncentral forces. The
modification is made by increasing the mass of one
particle located at lattice point 0={0,---,0} to a
relatively large value. The equations of motion can be
written in matrix notation ash$

MX{g(t)= "VX(l), (1)

where M and V are the kinetic and potential energy
matrices,” respectively, the vector x(¢) specifies the
configuration of the lattice® at time ¢, and each subscript
¢ denotes differentiation with respect to the time. Periodic
boundary conditions are imposed and the number of
particles in each lattice direction is 2N-+1. It is shown
in I that the position «[0,¢] and velocity x,[0,:] of the
heavy particle 0 at time ¢ can be expressed as linear
combinations of the initial positions and velocities x(0)
and x;(0),

2[00 ]=MY{ XO™Mx.(0)+ X.()™Mx(0)} (@)
and

20, ]=M{X:()"Mx:(0)— X()"Vx(0)}, (3)
where M is the mass of the heavy particle, and the
superscript T denotes the transpose of a matrix. The
time-dependent coefficients X(f) have the very import-

ant property that they are a solution of the equations
of motion (1) for the special initial condition

#[R,0]=0, allR 4)
and
R0] 1, R=0
X3 WU =
L 0, Rs=0,
ie.,
MX. ()=-VX{). (4a)

This property plays an essential role in obtaining
simple statistical formulas.

§R. J. Rubin, J. Math. Phys. 2, 266(E) (1961).

7The potential energy matrix V has been modified in one
respect, namely, each lattice particle is fastened to its equilibrium

osition by an additional weak spring (force constant=x«').
}'i‘his medification is introduced only as a formal convenience to
make V positive definite. Ultimately the results are examined in
the limit ' — 0.

8 The Rth component of x(?) is 2[R,t] where R is a vector
whose # components define the equilibrium position of particle
R. #[R,] is the displacement of particle R from its equilibrium
position in one of the lattice directions at time ¢. It is a property
of the lattice that motions in different lattice directions are
independent.
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The initial conditions x(0) and x,(0) are assumed to
be canonically distributed as in thermal equilibrium:

Wx:(0),x(0) =9 exp{ 1 (:(E)(;) )T

v ((kT)—lM 0 )(x,(O)
0 (RT)"'V/ \x(0)
(Xt 0
x(0)
is a partitioned vector whose first (2N<4-1)* components
are x.(0) and whose second (2N-1)" components are
x(0).

It will be seen in Sec. III that, as a consequence of
the thermal equilibrium assumption, Eq. (5), the
joint pdf W, is a multivariate normal distribution:
Although the procedure by which W, is obtained
involves the use of a cumbersome notation, the final
results are remarkably simple. The first moments
(means) and the second moments (covariances), which
completely define W,, are expressible in terms of the
0 component of X(f) only. The results obtained in
Sec. III constitute a generalization of the results of
Mazur and Montroll® in two respects: (1) the mass of
one of the lattice particles is different from the others,
and (2) the second moments of the position variables
as well as the velocity variables are obtained. Mazur
and Montroll investigate questions of ergodicity,
Poincaré cycles, and irreversibility for lattices contain-
ing a large, but finite, number of identical particles.
Their arguments can be applied unchanged to the
present generalized problem. However, the primary
question which we consider in this paper is the effect
of the large mass of lattice particle 0 on its statistical
dynamical behavior. To eliminate the consideration
of Poincaré cycles, which we consider irrelevant to
our problem, we treat the limit in which the number of
lattice particles (2N+41) is infinite. In this limit, when
the masses are all equal, there are two characteristic
times, the vibrational period associated with the mass
m and the lattice force constant «, and a longer charac-
teristic time associated with the oscillatory decay® of
the velocity autocorrelation function. [The velocity
autocorrelation function decays as £~¢, where the value
of ¢, which is of order unity, depends on the dimensional-
ity of the lattice.’] In our model, the effect of making
the mass of particle 0 very large is to introduce a
third characteristic time, which is associated with the
rate of momentum transfer from the heavy particle to
the rest of the lattice.

In this paper, we examine in detail the statistical
dynamical behavior of the heavy particle in the 1D,
2D, and 3D lattices. It will be helpful in understanding

O

where

8 P. Mazur and E. W. Montroll, J. Math. Phys. 1, 70 (1960}.
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some of the dimension-dependent properties of our
model to keep in mind the following connection between
the lattice equations of motion (1) and the #D wave
equation. Equation (1), with all masses equal, is the
finite difference analog of the nD wave equation which
is obtained by replacing the »D Laplacian by the
appropriate second differences.

III. CALCULATION OF PROBABILITY
DISTRIBUTION FUNCTIONS

The canonical distribution function, Eq. (5), which
characterizes thermal equilibrium in the lattice, is an
example of a multivariate normal pdf. We will summar-
ize three theorems concerning these distributions
which will be useful in our analysis.?

Theorem 1. If the pdf of the components of an
m-dimensional vector Y is

Qoy (|27 D exp{—3(Y—w)T =7 (Y—w)}, (6)

where X! is an mXm positive definite matrix and
{=-!] denotes the determinant of £~ then the mean
value of Y is u and the covariance matrix is ¥ (the
inverse of 1), The 4, jth element of X is the covari-
ance or expected value of the product of the 7th and
jth components of Y—u,

2= (Y i—p) (Y j—us))- Q)

A multivariate normal distribution such as {6) is
completely specified by u and X; thus the pdf (6) can
be denoted as n{Y|u,X}.

Theorem 2. If Y is distributed according to the pdf
1{Y|u,X}, then a set of p linearly independent combina-
tions of the m components of Y, Z=DY, is distributed
according to the pdf n{Z]Dyu, DEDT}, where D is a
X m matrix.

Theorem 3. Let the components of Y be divided into
two groups composing the subvectors Y® and Y®.
Suppose the mean g is similarly divided into y® and
u® and suppose the covariance matrix £ of Y is
divided into X;;, X2, Xz, the covariance matrices of
Y, of YO and Y®, and of Y®, respectively. Then if
the pdf of Y is n{Y|u,=}, the conditional pdf of YV
given Y is

M YO g 1, By (YO = ®), Byy~ By Bgs 1 B}

A. Derivation of the Joint pdf,
W, (VosUoylo} * * * 3 Vretylr_1ytr1)

Let us now consider the problem of obtaining the
joint probability that the velocity and position of the
heavy particle are vy and o at fo, v: and u; at &y, -+ -,
and v,_; and %,y at ;. The set of linear relations
between ©g, **°, Ur1, %o, *°‘, %1 and the initial
conditions can be represented by the partitioned

375
matrix expression

w) (MMX()]

Vp-i

— M VX Tr

MM ()]r —MTVX ()]
w | |MOMX@T MOIMX())

M_IEM ):(t (th—l)]T

(o)

M- [MX(@)]*

Up-1

or
(V):D(Xt(O)),
u x(0)
where the components of the partitioned vector
v
()
are v, -, Ur-1, %o, °* %1, and D is the partitioned

matrix on the right-hand side of Eq. (8). The pdf of
the initial conditions Eq. (5) is

GO (0 v}

From theorem 2, the pdf of
()
u
W(‘Uo,uoyto; A Wr—«l,“r»l;tr—l)

L0 O G L A

The covariance matrix
ETM 0
)
0 ETV

reduces to a symmetric partitioned matrix

ETM- 0 T Eve
o (T
0 TV b

Eu,u
where the elements of the X7 submatrices are
pASHIES (WUJ>
= kT M2 X,(t: )TM X.(t)+ X(t)TVX(2)},
o= (o)
=kTM~2 X,(t)™ X (1)~ X(@t)™MX, (1)}, (12)

= (ua;)
=kTM~2 { X(t)"™M X (t;)— X, ()M X(¢))}, (13)

is

(11)
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and

= (ui;)
=k TM—2{ X ()™M X(2;)
+HMX, (@) PV IMX ()T} (14

Expressions (11)-(14), which are sums over the entire
set of lattice points, can be considerably simplified.
First, we will simplify:

— (BT)M Zv ;=M X, (t)™™[ — X,(¢,)]
—X(@)TVLX (1) (15)

The right-hand side of Eq. (15) has the form of Eq. (3),
the expression for the velocity of particle § as a linear
combination of initial conditions. In this case, the
initial positions are x(0)= X(¢;) and the initial velocities
are the reversed velocities x,(0)=— X,(#;). Recalling
the fact that X(#;) and X,(¢;) express the state of the
lattice at time #; corresponding to the special initial
state (4), we see that with the velocities reversed at
time #; all lattice particles retrace their paths® and

Zov = hTMIX [0, £;—2;]. (11a)

Correspondingly simple expressions can be obtained for
Zov;; and 2¥;; by using Eq. (2). The results are

v = kTM1X[0, lj'—lfi] (12a)

and

Zw = —kTMX[0, t;i—1]. (13a)
Finally, we will simplify the expression for Z®¥;
First note that the integral of M X, (¢)= — VX(¢) with
respect to the time is

MX,()= MA—V f X(o)do, (16)

where A is a vector whose components are all zero
except for the component 0 which is unity. On substitut-
ing Eq. (16) in (14}, we find

2““{53 kTM‘z{ X(f@) ™ X(ij} +M2V—100

i i
-M f X[0,0ldo—M f X[0,0]do

[ f X(o-)dor] [ f X(a)da]} )

where Vo0 is the 0,0 element of V1. Now consider
Eq. (2) for #[0,;] when x,(0)=— X,(#;). and x(0)
= X(¢;). It can be written as
X[0, t;—t;]
=M~{— X(t;)"™M X (2:)+ X, (t;) "M X(:)}
=M"{— X(t;)"™™MX,(t)+X(t)"™™MX.(2)}. (18)
©In 1, the only covariance considered was Zv;=kTM~2
x{X;(t.)TM Xg(t,)+ X{#)TVX (). ‘The term in braces was

identified with twice the lattice energy associated with the
special initial condition (4), i.e., 2(M/2),
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By using Eq. (16) for M X;(¢:), Eq. (18) can be rewritten
as
X[, ti—t;]= M*l{ — M0+ X ()™M X ()
t
+ X(tj)TVf X(¢)do } (19)
il

By integrating both sides of Eq. (19) with respect to ¢;
and rearranging, one obtains

[ fn tix(e)dg]”v[ fo HX(G‘)(ZO']—[— X()™MX(,)

171 171
M f X[, t;— o Jdo+M f X[0,07do
(1] 0

‘Mf:

On substituting the right-hand side of Eq. (20) in
Eq. (17), the final expression for Z*%;; is

X[0,0ldo+M f th [0,0]ds.  (20)

7]

ti—t;
Sus = kT V-lo0— kM X[0,0]do.

[\

(14a)

We have shown that, aside from the factor 2TM~,
all the covariances of the joint pdf (9) can be expressed
in terms of a single function X[0, ¢;—¢;], its integral
and derivative, and the quantity V—'co. The functions
X[0,5] and f!X[0,0]do are even functions of {, and
X0, is an odd function of £ Note that the quantity
V—l00 approaches infinity in the physically interesting
limit in which the added spring constant ' — 0.7 Hence,
the covariance approaches infinity. This limiting
behavior is to be expected for the model considered
here in which periodic boundary conditions are imposed.
However, it will be shown that the conditional pdf’s
of interest have conditional covariance matrices which
remain finite in the limit ' — 0.

B. Derivation of Conditional pdf’s

We consider some specific examples of conditional
pdf’s.
1. P(m,t{-vo,O)

The conditional distribution P(v1,4]90,0) was deter-
mined in I. We will rederive the result from the joint
pdf W(v0,0; v1,8) for the values of the velocity 7, at
=0 and v, at #. According to Eqs. (9) and (11a),

vesnr-o|()/()

( RTM-
ETMX[0,0]

ETM—1X,[0,6]
, (21
RTM? ) } @
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where X[0,0]=1. On using theorem 3 for the pdf which is identical with the result in I.
(21), with YW =9, Y=y, =;;=F»=EkTM"!, and
X.2=kTM~1X [0,f], we obtain the conditional pdf 2. P(u,t|10,0)

P(v1,t120,0) The joint pdf W (u0,0; #1,f) is, according to Egs. (9)
=1{v:| 20X, [0,0], kTM1(1—X2[0,£])}, (22) and (14a),

t
ETV—'00 ETV-l00— kTM~1 f X[0,0)do

0) SN

Ho
W (10,0; u1,t) =1 ( ) t
u
' kTV—loo—kTM‘lf X[0,6)do ETV— 100
o

Again using theorem 3, we obtain the conditional pdf

P(u,t|ue,0)= n’ %y [1 - VftXE0,0':IdG‘] o, 2kTM_1f X0, do [1—%»] X[ﬂ,a]do’] ], (24)

where v= (M V00)~. The variance ((#1— (#1))2) approaches a finite limit for fixed 7 as " — 0 whereas the elements
of the 2X2 covariance matrix in (23) are infinite in the same limit.

3. P(v1,u1,t] vo,240,0)
The joint pdf W (ve,10,0; v1,%1,f) is '

o) | 0 RTM RTMIX[0,4] 0 +ETM-IXT0,0]

ol o ETMAX[0,4] RTM —RTMAIX[0,£] 0
LAPRERTTE 0 —RTM-X[0,4] ETV-100 kT(V“oo—M‘l / ‘X[o,a]da)

wl||lo] |+erarxron 0 kT(V—loo—M—l f ‘X[o,a]da) ETV-00

Using theorem 3, with

Vo 2 RTM! 0
Y(2)=( ), Y(1)=( )’ 211=( )’
o %y 0 ETV-00

ETM—1X[0,1] —RTM—1XT0,(]
222=211 and 212=

’

t
KTM-1X[0.7] kT[V—loo—M—1 f X[O,a]dcr]
0

we obtain the joint conditional pdf

| 20X o[ 0,8 ] — uov X[0,1] ‘l
U1
1,UE | Vo,0,0) = ¢ y By 25
P(v1,u1,t | v0,80,0) =10 (ul) voXEO,t]+uo[1—uf X[O,a]do] J (25)
where ’
ETM-{1—X2[0,]—»X?[0,1]} kTM—lX[o,tj{ 1-X,[0,t]—» f X[0,0]do }
= ’ |- @o

kTM-lX[O,t]{l—-Xt[O,t]—v f tX[O,a]da} kTM—1{2 ]; tX[O,a]dq—X{O,t]—v[ fo tX[O,o]dcr] }
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IV. VALUE OF v AND TIME-DEPENDENT BEHAVIOR
OF X.[0,t], X[0,t], AND /it X[0,0dc.

In the remainder of this paper, we will confine our
discussion to the limit in which the number of particles
in the #D system is infinite and in which the added
force constant? «’ is zero. It was shown in Sec. III that
the means and covariances of the various pdf’s were
expressible in terms of the parameter » and the function
X[0,/] and its integral and derivative. Note that
X[0,:] and X[0,£] are the velocity and position of the
heavy particle at time ¢ corresponding to the special
initial conditions (4). This special initial value problem
will be referred to as Problem 1. The quantity

f ' X[0,03de

has a similar physical interpretation which is suggested
by the following form of Eq. (16),

Mx,;()=MA—Vx().

Equation (16a) is the set of equations of motion for an
nD lattice in which a constant force of magnitude M
is suddenly applied to the heavy particle; and /¢! X(c)do
is the solution of Eq. (16a) corresponding to the special
initial conditions

x(0)=0 and x.(0)=0. (16b)

Thus it is seen that fytX[0,0]de is the position of
the heavy particle at time ¢ when a force M is suddenly
applied to 0 in a lattice which is initially at rest with
all particles at their equilibrium position. This special
initial value problem will be referred to as Problem 2.
In this Section we consider the foregoing quantities in
detail.

A. Value of v in nD Lattice

First consider the value of »= (M V—'00)~.. Montroll
and Potts!! obtained an expression for V00 in a study
of the effect of defects on lattice vibrations. Their
expression for ¥%o0 in the limit of an infinite system is,
when translated into our notation,

1 n 2 2r
V-1loo= (_) f .. f d01- <-db,
2r 0 0

XE042 3 k;(1—cost)},  (27)

i=1

where «; is the force constant associated with displace-
ments relative to the jth lattice direction. In the case
of the 1D and 2D lattices, in the limit ' — 0, the
integral in Eq. (27) diverges as (') * and —~In«’,
respectively. However, in the »D lattice (n2>3), the
integral is finite.!? For the 3D lattice and k;=«,5=1, 2, 3

11 E. W. Montroll and R. B. Potts, Phys. Rev. 102, 72 (1956).
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F1G. 1. The cut in the p plane and the paths of integration.
The integral referred to as L’ is the line integral which starts
near G, encircles the origin H, and returns to G.

the value of V100 is?

V-1lo0= 1o, (28)
where
Co=87"18+12VZ—10V3—T4/6]
XK (2—V3) (V3—v2)]==1.019, (28a)

and X[e] is the complete elliptic integral of the first
kind. Thus, for the 1D, 2D, and 3D lattices, with
K1=Ks=kKz=x, the values of

Vo= lim lim »
&0 N—oow

are, respectively, »;=0, »o=0, and ys=4x(M o).

B. Time-Dependent Behavior of X,[0,¢], X[0,t],
and /' X[0,67]de in the 1D, 2D,
and 3D Lattices

The integral representation obtained in I for X[0,£] is

1
X[O,t]=Q+

2w

(29)

f pler'dp

1 0p+(p¢00,6]
where Q+1=M/m is the ratio of the masses of the
heavy and light particles, and where L, the path of
integration, is a line parallel to the imaginary p axis

and to the right of all singularities of the integrand
(see Fig. 1). The function {{0,p] is, in the limit ¥ — o

12 The value of the integral in Eq. (27) as a function of # for
«’=0 and for all x;=« has been given by E. W. Montroll, J. Soc.
Indust. Appl. Math. 4, 241 (1956), in connection with a study of
random walks on zD lattices. In this reference the divergence of
the integral in the 1D and 2D lattices is associated with the
eventual certain return of a random walker to his starting point
in an infinitely long walk on these lattices.

( 133(}). N. Watson, Quar. J. Math., Oxford Series (2) 10, 266
1939).
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and «’ — 0, with k;=«

(L) [ oo

X{p 4+ 2m e S (1—cost )}, (30)

=1

an integral similar to the one which appears in Eq. (27).
The fact that Q is large compared to unity plays a
dominant role in the following analysis. On the other
hand, it should be noted that if the mass of particle 0
is the same as the mass of the other lattice particles
(i.e., @=0), then it follows from Eq. (29) that {[0,p]is
the Laplace transform of X[0,¢]. The integrations in
Eq. (30) can be carried out explicitly for the 1D and
2D lattices to give, respectively,

$L0,p]=p [+ 41} (31)
and

5[0’?]= [?2+47}1 2F1{%> 3;1; 1642 (P2+4'Y)_2]7

where oFi[ 7 isa hypergeometric function and y=m"1.

In I, the time-dependent behavior of X.[0,t] was
determined for the 1D and 2D lattices. The method of
analysis developed there will now be used for the
function fy*X[0,0]de in the 1D, 2D, and 3D lattices,
-and the results for the functions X[0,{] and X,[0,f]
will merely be stated. Before considering the detailed
behavior for each lattice, we note the following five
facts concerning {[0,p] and the integral representation

Q+1f pertdp
omi Jp Qp+(pe[0,p])"

(32)

s=0,1,and 2, (33)
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for an D lattice:

(1) The only possible singularities of {[0,p] as a
function of  are located on the imaginary axis at =0,
+29%, -, £2(ny)k. Consequently, a cut can be
constructed in the p plane as shown in Fig. 1, and the
path of integration can be closed around the cut.

(2) The closed path of integration can be shrunk so
that in the limit, the contour integral Eq. (33) is the
sum of three parts: (i) the difference of the line integrals
on either side of the portion of the cut ABGDE, (ii)
the contributions of the residues of the integrand at
poles which are zeros of the denominator

D($)=0p+ (50,57,

and (iii) the line integral L’ around the origin following
the cut GH and the small circle I. Thus the radius of
the circle ' in Fig. 1 is taken to be so small that any
zeros of D(p) lie outside I

(3) The difference 8,(f) of the line integrals on
either side of the portion of the cut ABGDE is

e Lrellovamgl
8Pt .+.
2mi fE*AP— e p¢=[0,2]

m]—l }dl’; (35)

where Sp-. denotes the line integral along ABGDE
from E to 4, and {z[0,p] and {,[0,27] denote, respec-
tively, the values of {{0,p] on the right- and left-hand
sides of the cut. On simplifying Eq. (35) for 6, (2),
one obtains

(34

5.0 ()=

Jors

(£t 2[0,1)~1— (pt [0,

Q
3 (1) =—— et ap.
2mi fEf e {[Qp+(1)§R[0,p])—1]EQp+(prLEO,p])-‘] ’

1t can be verified from Eq. (36) and the expressions for
£[0,p] in Egs. (31), (32), and (30) that the magnitude
of 8,(§) is bounded by C.(4y) 30 for all times ¢,
where C, depends on # but is of order unity. It was
shown in detail in I that C1=vV2. Although the foregoing
estimate of |8.(¢)| is sufficient for our purposes, a
sharper estimate is obtainable. The method which can
be used is illustrated for the 1D lattice in Appendix A
where it is shown that

|8:9(8)] < (4y)~*220Q min{ 1,7 ¥(2vit)4}, (37)

where min{a,b} denotes the smaller of ¢ and b.

(4) Since 0>>1, the only zeros of D(p), Eq. (34),
are located near p=0. Therefore, the expansion of
¢[0,p] for |p|<K1 can be used to locate the zeros of
D(p) for each lattice.

(5) It follows from (3) and (4) that appreciable
contributions to the line integral (33) can arise only
from zeros of D(p) in the neighborhood of =0 and

(36)

from the line integral L’ near p=0. There is a further
simplification, however, in the case of the 1D and 3D
lattices which we now consider. It was noted in I that
in the case of the 1D lattice, the denominator

D(p)=Qp+[p*+4r 1

is an analytic function of p in the neighborhood of
$=0and at p=0, and so

D(p)=0p+2v¥(1+p*/8v+ ).
Consequently, the line integral L’ is equal to the sum
of the residues of the integrand at =0 and at any
zeros of D(p) on the negative real axis near p=0.
The final result for the integral in Eq. (33) in the 1D
case is

0+1 f predp Q [pTrendp
21ri L

p+p v 2mi Jo Qpt2yt

(38)
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where C is a closed contour surrounding =0 and all
zeros of Qp-+[p24-4y . We have introduced the special
approximate equality sign = to indicate that the
magnitude of the difference between the right- and
left-hand sides of the equality is bounded by a quantity
at most of order C,(4y)~*20~L.

A similar simplification is found for the 3D lattice.
The expansion of {[0,p], Eq. (30), for ||<1 in the
case of the 3D lattice has been given by Kac and
Berlin in their paper on the spherical approximation
in the Ising Model. The result is!s

¢00.21= (4y)H{So— (vir)"1p+- - -}, (39)

where ¢ is defined in Eqgs. (28) and (28a). The principal
feature of the expansion in Eq. (39) is that p=0 is
not a branch point. As in the 1D lattice, the only
significant contributions to the value of the integral
(33) come from the residues of the integrand at the
poles near p=0, i.e.,

Q+1f per'dp
2mi 1 Qp+ ([0,

L@ }{ prerdp
2w Je Qpt+-t[iop— (vin)p2 T

Although we will not give the details here, it can be
shown that in (2r41)D lattices there is no branch
point singularity at p=0, but that in (2r)D lattices
there is a logarithmic branch point at p=0. This
difference is consistent with known fundamental
differences in the nature of the solutions of the (2r+1)D
and 2rD wave equations.!®

(¢) 1D Laitice

We will obtain approximate expressions [in the
sense of Eq. (38)] for JuX[0,0]ds, X[0,], and
X[0,£]. The expression for f3tX[0,0]do is

Q[ pedp

11
f X[0,0)do=—
A 2mi Je Qp+2vt

(40)

(41)

or
f XEO,UJdG*E{Zv*t—QEI—EXP(—év*@ 0. (42

The values of X[0,£] and X0,] are
X[0,/1=0(2v){1—exp(—2v}Q7'0)}

X[0,/]=exp(—=2v}Q"). (44)
The last expression was obtained in L. It is seen that

M. Kac and T. H. Berlin, Phys. Rev. 86, 621 (1952).

18 Some of the higher order terms in the expansion which are
actually not needed here are given by A. A. Maradudin, E. W.
Montroll, G. H. Weiss, R. Herman, and H. W. Milnes, Acad.
roy. Belg. CL sci. Mém. XIV, 7 (1960).

16R. Courant and D. Hilbert, Methoden der M athematischen
Physik (Interscience Publishers, Inc., New York, 1943), Vol. 2,

Chap. 6.

(43)

and
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in Problem 1 [Egs. (4) and (4a)] the velocity and
position of the heavy particle behave as though the
particle were moving in a viscous medium with a
resistance proportional to its velocity. In Problem 2
[Egs. (16a) and (16b)], the position of the heavy
particle increases linearly with the time for large &
Thus the heavy particle reaches a terminal velocity,
as it would if it were moving through a viscous
medium. In addition, it should be noted that the equa-
tions of motion for the lattice are the discrete analog
of the continuum equation of motion for an elastic
string. The result for the analog of Problem 2 for the
wave equation is the same as that found above.

(8) 3D Lattice

Next consider the functions fo!X[0,0]de, X[0,],
and X[0,7] for the 3D lattice. On introducing the new
variable p=2v% in the integral representation for
Jo'X[0,0do, we have

exp(2vipt) dp

f X[ﬂ,cr]daﬁg(&y)— f —. (45)
0 2mi ¢ Qp*+($o—2m ) p

The two zeros, pi, of D(p)=Qp+ (fop—27"1p?)~! can
be found by substituting wex3*+9): for p in

Op*=— (§o—27""p) 7, (46)

and solving the following pair of simultaneous equations
for the real and imaginary parts of (46):

ot 27w sind
oAt dr—twlo sind

Quw? cos26= 47

and
27w cosd

o2 4n 2w+ 4rw sind

Qu? sin2§= (48)

Both w and é are small compared to one, so it can be

seen that the solution of (47) and (48) is
w=(Qfo)~*

5i7r—1§'0_5Q_§. (50)

On using the theory of residues,” the expression for
JotX[0,0]do is

(49)
and

exp(Zvlost)  exp(2v¥ot)

l ’ (5 1)
p+*D ' (P+) p-2D’ (Pf)

j;tX[O,a]d = %{ fot

where
D'(p)=0Q42xp (o= 2n"py) 2
—ps 2 (§o— 27 py) 7,

and pp=wetd i Equation (51) can be simplified
with the aid of the relation Qpi?=— (fo— 27 Tp, ).

17 L. A. Pipes, A pplied Mathematics for Engineers and Physicists
(McGraw-Hill Book Company, Inc., New York, 1946), p. 464.
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TasLE 1. Solution of equations (57) and (58) for several
different values of Q.

Q € ] In(8/&) Qer1
127 10715 0.1863 0.1112 0.0404
811 10-2.0 0.1483 0.0886 0.0258
5590 1025 0.1232 0.0736 0.0178
40800 10730 0.1053 0.0130

0.0629

After some reduction and after neglecting terms of
order O~ with respect to unity, the final expression for

JoX[0,0]do is

f X[0,0 Jdo= %ﬁ_’f{ 1—eg 36t
’ Y X [coswi+B(2w)~ sinwt]}, (52)

where 8=4¢ 2 ¥0~1 and w=2v}(Q¢0)~*. In the same
way, the following values can be obtained for X[0,¢]
and X,[0,0],

XT[0,6]= (O¢o/4v)?* sinwte 36t (53)
and

X[0,t]= e ¥ coswi—B(2w) ! sinw?]. (54)

From the point of view of Problems 1 and 2, it is seen
that the heavy particle in a 3D lattice appears to behave
like a damped harmonic oscillator. There is also a
connection with the analog of Problem 2 for a continuous
elastic medium, i.e., for the 3D wave equation.

(¢c) 2D Lattice

Finally we consider the functions f3¢!X[0,0]do,
X[0,¢], and X[0,] for the case of the 2D lattice in
which there is a significant contribution from the line
integral L’ around the cut GH. On introducing the
variable 2% for , the exact expression for fo!X[ 0,0 ]do,
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according to Egs. (33) and (32), is
Q+1) )™

2

¢
f X[0,0)do=
0
exp(2v*tp) dp

X T .
j; 0o+ (p*+1)/2Fi[3,3;1; (02 +1)2] o

The problem of determining the zeros of Qp?4-(p2+1)/
oF (3,3, 1; (p*41)~2] has been considered in I. In the
analysis, the hypergeometric function is replaced by
the equivalent expression!s

oFi[33;1; (p*+1)72]

(12
=71 ln-—————zFl[%,% ;1
p*(p*+2)

(85)

' pz(p2+2)]
" (p41)"

ot z__; Wn+1)~y(n+3))
(%>n<%>,,[p2<p2+z>]n
X
(0)a (1)L (o241)?

—rn(8/p)+ .

As shown in I, there are two zeros which have the form
pi=ectd™Di where e and § are solutions of the pair of
transcendental equations

Qe cos2=x In(8/¢?)/{[In(8/e?) 2+ (x+28)2} (57)
and
Qe sin26 =7 (r+28)/{[In(8/*) >+ (x+28)2}. (58)

Pairs of values of e and & for different values of Q are
given in Table I, which is reproduced from I. On using
the theory of residues, the expression for f4!X[0,0]do is

(56)

f X[0,0 o= —

4ye?

exp(— 2y}t sing) { cos(2ytet cosd— 26) — Qen~! cos(2viet cosd— 38) }
1—2Qe2r1 cosd+Q2ein2

The corresponding expressions for X[0,£] and X ,[0,/] are

X[0,0]=

2vle

and

exp(— 2v}¢ sind) { sin (2y*et cosé—8) — Qert sin(2v}et cosd—25) }
1—2Qe*r ™! cosb+Q%e'n™?

X [0,:]=exp(— 2y sind) {

cos(2ytet cosd) — Qen=1 cos(2vtet cosd—8) }
1—2Q0€e* 7! cosd+Q2eln?

—1 X } d
+(2(4'10 f exp(2vtip) de (59)
2xi Ju Qp*+nllog(8/p) 1
~} pl — it
+Qv f exp(—2vity)dy (60)
= Yo [1+Qy*n* In(8/y?) +4Q%*
_Z_QJ-1 y exp(—2v¥y)dy (6
Yo [14+Qy*n! In(8/y*) P+4Q%*

18 A, Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions (McGraw-Hill Book Company,

Inc., New York, 1953), Vol. 1, p. 110.
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where the line integrals L’ around the cut GH in Egs.
(60) and (61) have been replaced by the differences of
the line integrals on either side of GH. Equation (61)
was obtained in Appendix C of I. The author has been
unable to express the integrals in (59)—(61) in terms of
known functions. For this reason, we obtain only
estimates of their magnitude. First, note that the
integral in Eq. (59) dominates the right-hand side for
sufficiently large times; it is shown in Appendix B that
the asymptotic formula for f3'X[0,0 Jdo is

f X0 Mo~ Q) (@), (62)

The integrands in Egs. (60) and (61) are positive.
Consequently, the integrals are monotone decreasing
functions of the time. The initial values of these
integrals are

—3 1
1= [ (T1-0yet In(s/y) 14010y
Q
sind—Qe*r ! sin28
ﬁ(we)ﬂ{ (63)
1—2Q€*r ! cosd+Qeln?
and
20
Q== [ ([1= 0t ne/») T4y
™ 8
4 1—Qe*r! cosd
© 1—20er 1 cosd+Q%ein?
Qetr! cosd— Q%in?
(64)

1— 201 cosé-i—Qge‘w”?.

On referring to Table I, it is seen that for Q>10%
Qér' is small (<0.02). By retaxmng the leading terms
of 1,(0) and 7:(0) in an expansion in powers of Qer™,
we have

I(0)=2(2v%) ! sind

1,(0)=2Qen (66)

I(t) in Eq. (60) and I.(t) in Eq. (61) are Laplace
transforms. Their asymptotic values, for ¢ sufficiently

(65)

and

FTM-1[1—¢2]

T
(kTM*lb—l[l-—e*”‘]? ETM-b-2[2bi— 3+4e~b'—

where b=2y30~1. It is noteworthy that the conditional
mean value (v4) is independent of #, and is simply an
exponential function of the time. Such behavior is
characteristic of a free particle undergoing Brownian
motion. In fact, the result in Eqs. (70)-(72) is identical
with the conditional pdf obtained from the Kramers’

J.
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large, follow from Watson’s lemma,™
L) ~QQ2ynt)™ (67)
and
() ~QQ2yri) ™. (68)

The contribution of the integral I3(f) to the value of
X.[0,£], which is initially —Q¢*z%, decreases ultimately
as in Eq. (68). Thus, there is an initial period, noted in
1, in which the function X,[0,1] is approximately

X [0t ]=2exp(— 2y¥et sind) cos(2viet cosd), (69)

where § is of the order of 0.1 or smaller. The estimate
of the contribution of I;(¢) to X[0,] is less precise,

X[0,/1=2(2vte)! exp(—2v*e sind) sin(2ylet coss—3s)
+ (27}¢)~ sins,

where the initial contributions of the residues and of
1:(0) compensate each other.

From the point of view of Problem 1, the heavy
particle in a 2D lattice behaves as though it were bound
to its equilibrium position, but it is seen that the
displacement of the heavy particle in problem 2
increases asymptotically as Q(2zy)™ In(2v%*). Clearly
the same asymptotic type of result is to be expected for
the continuum analog of Problem 2, i.e., the two-
dimensional wave equation for an elastic membrane.

V. PROBABILITY DISTRIBUTION FUNCTIONS IN
THE 1D, 3D, AND 2D LATTICES

In this section we will assemble the results obtained
in Sec. ITI and IV.

A. 1D Lattice

On substituting the 1D values of vy, Jfo'X[0,0]do,
X[0,t], and X,[0,t], Eqs. (42)-(44), in the general
expression for P (1,01, | vo,%0,0), Eq. (25), one obtains

PO (ot |00 )= ”{ (ul) (<u1>) 2}’ (70)

with - b
Uy Dpe™ ¢
= 7
b (”ob*’D*-e'“Huo.)’ o
and
ETM15-1[1— b2
_2bt])’ (72)

equation®® for a free Brownian particle, i.e., the
fundamental solution of the equation

9P /dt= —v(3P/ou)+ (/) (bvP)+q(2P/3w®), (73)

19 See A. Erdelyi, dsymptotic Expansions (Dover Publications,
Inc., New York, 1956), p. 34.
% See Eqgs. (279), (281), and (284)-(286) of reference 3.
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corresponding to the initial condition P (v,4,0)=0§(v—1,)
X 8(u—uo). Thus, to within the accuracy of the equalities
in Egs. (71) and (72), the random thermal motion of a
heavy particle in a 1D lattice at a temperature T is
described by Kramers’ equation for a free Brownian par-
ticle, Eq. (73), in which the phenomenological constants
b and g are, respectively, 2y*Q~* and 2TM—1. 1t is also
possible to determine a diffusion coefficient for the
heavy particle from the variance of the pdf P (u1,t| %0,0),
given in Eq. (24). For the 1D lattice, the variance is

(1= (1)) =2kTMQ(47){2v— QL1 —¢ T} (74)

For times which are large compared to the velocity
relaxation time 47, the phenomenologlcal analog of
Eq. (74) is

((ur—(ur))))=2Dt;
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and so the diffusion coefficient in Eq. (74),
D=ETMQ(4y) 27y} =ETm" (2},

is independent of the mass of the heavy particle and
depends only on the properties of the medium with
which the heavy particle interacts, as should be
expected.

B. 3D Lattice

The value of »3 obtained in Sec. IV.A is
ve=4x(M{e) =4y (Qfo)

On substituting this value of »; and the results for
Jo'X[0,61do, X[0,t], and X,:(0,f), Egs. (52)-(54), in
the general expression for P(vy,u1,t]v0,u0,0), Eq. (25),
one obtains

v v
P(3>(v1,u1,tlvo,u0,0)=n{( 1) (< 1>), x } (75)
with “ b
(( v 1)) ( voe~ ¥ coswt— B (2w) ! sinwt |— mowe ¢ sinwt 76)
= 6
1 o vow™ e~ ¥t sinwi+1oe~ ¥ coswi+6(2w) ! sinwt | (
an
) (kTM Y1 — e 1—Buw! sinwt coswt |} ETM~Bw2¢ Bt sinw! o)
- ETM'Bw2eP¢ sin’wt ETMQ¢0(4y) {1 — e P 1+Bw! sinwt coswt ]} )

The remarkable feature of Egs. (75)-(77) is that
P® (v3,u1,t| v0,10,0) is identical in form with the funda-
mental solution of Kramers’ equation for an under-
damped harmonic oscillator,®

3P/3t) = —v(dP/du)+ (8/0v)[ (Bv+w?u) P]
+q(32P/0?).

Thus, to within the accuracy of the equalities in (76) and
(77), the random thermal motion of a heavy particle in a
3D lattice at a temperature T is.described by Kramers’
equation for a harmonically bound particle, Eq. (78), in
which the frequency « and the phenomenological
constants 8 and ¢ are, respectively, w=2v¥(Qfo)?,
B=4y¥ 210, and q=kTMB3. [The effective force
constant associated with the frequency w is 4x{¢ .|
As {— o, the mean and covariance matrices, (76)

and (77), become
(o)~ )

(kTM— 0 )
- .
0 ETM=1Q¢0(4y)!

P® (91,my,0

(78)

and

Thus,

lf)o,uo,())
—11{2:|0, AT M—}11{u: |0, ETCo(4x)1).

21 See Eqs. (55) of reference 4.

The position distribution n{#,|0, #T¢,(4x)™} has also
been obtained by Montroll* in a study of the localiz-
ability of lattice particles.

C. 2D Lattice

The heavy particle in a 2D lattice exhibits properties
intermediate between those of a free and a harmonically
bound particle. For example, since »3=0, the conditional
mean velocity obtained from P® (vy,u4,t|v0,%40,0), Eq.
(25), is independent of the initial position of the heavy

particle,
(1) =10oX [ 0,0].

In addition, the conditional covariance, {(#1—(u1))%),
grows logarithmically with time,

((nr—~(u)))~kTMQ ()™ In(2v})
~ET (wx)~t In(2v¥).

This free particle behavior, however, is in apparent
contradiction with the fact that (»1), to a good approxi-
mation, is

('U1>§

2 E. W. Montroll, Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability (University of California
Press, Berkeley, California, 1956), Vol. 3. p. 209. A factor 27
is omitted in Eq. (45) of this reference. When this correction is
made, the agreement referred to in the text is obtained.

1o exp{— 2v}el sind)cos (2viel cosd).
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VI. nD LATTICE MODEL AND THEORY
OF STOCHASTIC PROCESSES?

In this section we discuss the relationship between
the nD lattice model of Brownian motion and the
theory of stochastic processes. It has been assumed in
our model that the initial positions and velocities of
the lattice particles are normally distributed, Eq. (5).
An important consequence of this assumption is that
the position #(f) and velocity »(¢) of particle 0 are
stationary Gaussian random (sg) processes,? independ-
ent of the mass of particle 0 [see Egs. (10), (11a)-
(14a)7]. The two functions together {v(¢),%(¢)} consti-
tute a two dimensional sg process. A question arises
as to whether this two dimensional sg process is
Markoffian.?5 An answer can be obtained by considering
the correlation matrix R(¢;—1,), ¢;>1;, which is formed
from the covariances 2Z";;=(v(t;)v(¢;)), Z"%;={(v(t;)
Xu(ty), Zwi=(u(t)o(ty)), and Z*;=(u(t)u(t;)),
Egs. (11a)-(14a); it is

R{ti—1)
L[ @@/ )/
T\ @)/t )/ )
X[0,t—t] vt X[0, t;—1t]
= ti—ti , (79)
- V,.*X[O, L—t] 1—v, X[O,a':lda'

0

where (v*) = (*(t,)) = RTM, (1) = (u2(¢;))= kT Voo,
and v,= (MV~e0)~'. The elements of the correlation
matrix Eq. (79) have been normalized so that R(0)=1,
the unit matrix. A necessary and sufficient condition
that the sg process {v(¢),#(t)} be Markoffian is that
R(?) satisfy the condition?®

R(ts—t1)= R(tz—fl)R(tg—tz),
where t3> tz> 1.
In the case of the 1D and 2D lattices (where v;=0

and »,=0), the correlation matrix R(¢;~—¢;) has the
simple diagonal form

R(tj—t)= (Xt[o’ozj_“] (1)) ;

(80)

(81)

R()= (e—%ﬂ’[cosw—— B{(2w)! sinwt ]

— et sinwt
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and the Markoffian condition, Eq. (80), is

X 0, t3—1ts | X 0, to—1 0
R(ta—z1>=( C ”0[ "] 1). 82)

Thus in the case of the 1D and 2D lattices, the necessary
and sufficient condition that the sg process {v(t),%(f)}
be Markoffian is that

X,I:O, tg—h]:Xz[O, t3—12]Xt[0, tz—h]‘ (83)
Since the only nontrivial solution of the functional
equation (83) is X,[0,¢]=¢"°, and since the integral
representation? for X,[0,f],

0+1 perdp
X[0,]= ,
= fLQH(prO,p])-I

is not of the form (1/2mi) S1e?!(p-+a)"ldp, it is clear
that the condition (83) is not satisfied exactly. However,
in the 1D lattice we have the result for O>>1, Eq. (44),
that X,[0,£]=exp(—2v*Q~) and conclude that, fo the
extent that the equality

(84)

X0, t:—t, =X [0, t:— 151X (0, ta—t1]

can be regarded as exact, the sg process {v(t),u(t)} is
Markoffian for the 1D lattice. In the 2D lattice, when
Q>1, we have from Egs. (61) and (64)

X.[0,t]=exp(— 2v*et sind)
cos(2vet cosd) — Qe2n! cos(2vtet cosd—8)
1—2Q€e*r ™! cosd+Q%'n?

—I,(%)
where
Qe’r cosd— Q%2

0<2() < .
1—-20€* ™ cosd+ Q%2

The upper bound on I,(¢) is of the order of 0.015 or
less for O>10* (see Table I). Thus, it is clear that
the Markoffian condition (83) is not satisfied for a heavy
particle in a 2D lattice.

In the case of the 3D lattice, we have from Egs. (79)
and (52)-(54)

e ¥t sinwt )
e coswi+B(2w) ! sinwt ] '

2 The reader is referred to reference 4 and J. L. Doob, Stochastic Processes (John Wiley & Sons, Inc., New York, 1953), for succes-

sively more detailed discussions of stochastic processes.

2 A random process y(#) is stationary if the joint p.d.f. W, (yo,fo; ¥1,1; « - ; ¥r—1, ¢r—1) is independent of £, and depends only on the
time differences £;—¢;. A random process y(¢) is Gaussian if W, (yo,fo; -« * ; ¥r1, tr—) =0{y|{(¥), T}.

25 A random process y(f) is Markoffian if, for £, >4, 1>+ - - >4, P(Ynsbn| Yty b1 =+ <5 Vi, 80 =P (Yunstn] Yai, Ene1).

26 J. L. Doob, Annals of Mathematical Statistics 15, 229 (1944). See also Note II in the Appendix of reference 4 for a proof which

follows naturally from Sec. I1I of this paper.

27 The exact value of X,[0,] is known for the 1D lattice when Q=0 (M =m) and Q=1 (M =2m). The values are, respectively,
Jo(2v¥) and (y¥#)"J1(2v¥). The former result is an old one due first to Hamilton and later rediscovered several times, and the

latter result was obtained in I. (See 1 for references.)



STATISTICAL DYNAMICS OF SIMPLE CUBIC LATTICE. II

It can be verified that this matrix satisfies the Markoffian
condition, Eq. (80), in the same sense as in the 1D
lattice, namely,

R{ts—t1)=R{t2—t)) Rt —12).

Note that the results just obtained concerning the
Markoffian character of {v(f),#(f)} for the 1D and 3D
lattices are not independent of the results in the last
section involving Kramers’ equation. For it has been
pointed out by Wang and Uhlenbeck* that the random
process {v(f),#(#)} governed by Kramers’ equation for
the Brownian motion of a particle in a force field K (#),

8P/d1=—1v(3P/ou)+
(8/8v)[(Bv+K (u)) P1+q(32P/8v%),

is, in general, Markoffian but not Gaussian. In the case
of the linear Kramers’ equations (73) for the 1D lattice
and (78) for the 3D lattice, the random processes {(Z),
u(t)} are Markoffian and Gaussian. On the other hand,
we have seen that in the case of the 2D lattice, the
random process {v(f),#(t)} is Gaussian but not
Markofhan.
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APPENDIX A. IMPROVED ESTIMATE OF THE
REMAINDER §6,®(¢)

Consider the integral

0+1 f exp(2vp)dp
L Qo+[p+1

and construct the two cuts as shown in Fig. 2.

X‘[07t]=
2w

F1G. 2. The horizontal cuts start at 4 and B
and extend to minus infinity.

The path of integration L can be shrunk so that
X {0,t] is the sum of the residue from the pole at
p=—Q! and the contribution §;(f) from the line
integrals around the two cuts,

exp (—x+1)2v¥ dx

5,0 (;)_gﬂ[ _ f" expl[(— x+4) 2y} ]dx
1 ® Q(—x+i)+[2xe—§1r1’_x2]%

2w

[

exp[ — (x+1)2v¥)dx 0

(—x+i)+[2xeimi— 22}

exp[— (x+412)2vy¥ Jdx

—j(: — Qi)+ [2neti—a2t

o+1 NS
= ( exp(2v¥i) f dx exp(— 2vhx)
2t 0

w —Q(x+1)F[2xeti— 2]t

(2weimi—a?)i— (2xeimi—g2)}

X
[Q2 (= 2412 4-Q(—x+3)[ (2xet7i— x2) 1 (2wedri— x2) ¥ ]+ (4x2e”+x4)*]

(2weti— o) — (2xeImi—y2)}

+exp(—2v¥) f dx exp(— 27*t_x)[
0

Q(x+47)2— Q(x+1) [ (2xer™i— a?) - (2ue ¥ — )]+ (4x2e—”i+x4)*] }

(A1)

Each of the integrals in Eq. (A1) is a Laplace transform. Asymptotic series for these integrals can be obtained
using Watson’s lemma.’® The leading terms in the asymptotic series are
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Q+1 I'@)
810 ()~ ) eBrild— gmil4
10 (O~—— exp (2 o G
ety 2 IO
o ~0* 2y

~—(2/m)*Q (2v} ) cos(2vit+m/4).
The corresponding results for 8,2 (f) and 8,® () are
510 ()~ — (2v1Q) 1 (2/m)}(2v¥) sin(2y¥4-n/4)
and
812 ()~ (4vQ) 7 (2/m)} (2v¥) ™ cos (2yh4-n/4).

It is clear that even when i~Q(2v*)~! and the exponen-
tial contributions from the residue are ~e, the
contributions of §,(® (f) are considerably smaller.

APPENDIX B. ASYMPTOTIC BEHAVIOR OF
Jo* X[0,0]de FOR LARGE ¢ IN THE
2D LATTICE

In the integral representation for Jo*X[0,0]do,
Eq. (55), the dominant asymptotic behavior arises
from the singularity p~! at the logarithmic branch point
p=0. For this reason, we add and subtract

0@y

2mi

f 76~ exp(2v¥p) In(p?/8)dp
L .

RUBIN
in Eq. (55),

t 2 —1
f X[0,01do= —9—(11:2— f exp(2v}p)[Inp—In2¥dp/p

0 2mi L
(01C
23
L f exp(271p)

{ oF1[3,35 15 (p24+1)77]
Q0% 2F1[3,551; (0*+1)2]+p2+1

dp

471 In(p%/8) }——. (B

p
The second integral in Eq. (B1) can be treated as
before, except that the cut along the negative real axis
from H to G must be extended to minus infinity.
Deforming the path L so that it follows the cut, it
can be seen that there is no longer a p™! singularity at
p=0. Further, it can be shown that the contributions
from the line integrals around the cut and the residues

of the integrand are bounded functions of the time.
Now consider the first integral in Eq. (B1). Its value is*®

_Q(ZM)‘1

2w

[ exp@vio)ing—1n213ds/o
L
=Q(2xy) {In(2v¥)+In(v.2D)},
where v, is the Euler-Mascheroni constant. Thus the
asymptotic formula for f4!X[0,0]do is
t
f X[0,61do ~Q(2r7)~" In(2v%).
0

28 A, Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Tables of Integral Transforms (McGraw-Hill Book Company,
Inc., New York, 1954), Vol. 1, p. 250.
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A system of harmonic oscillators weakly coupled by nonlinear
forces will not achieve equipartition of energy as long as the
uncoupled frequencies wy are linearly independent on the integers,
i.e., as long as there is no collection of integers {n:} for which
Zmwr==0 other than all nx=0. This result is shown to follow from
the general form of the Kryloff and Bogoliuboff series solution to
the equations of motion. Physically, the linear independence of
the uncoupled frequencies means that none of the interacting
oscillators drives another at its resonant frequency, and this lack
of internal resonance precludes appreciable energy sharing in the

limit as the coupling tends to zero. It is shown that the lack of
equipartition of energy observed by Ulam, Fermi, and Pasta for
certain nonlinear systems may be explained in terms of the
preceding remarks. Moreover, a Kryloff and Bogoliuboff series
solution to the appropriate equations of motion is shown to yield
qualitative agreement with the Ulam, Fermi, and Pasta computer
solution. Finally, a particular system of linear differential equa-
tions is solved which illustrates a mechanism whereby oscillator
systems may achieve equipartition of energy.

L INTRODUCTION

T is generally believed that when a large number of
independent linear harmonic oscillators are suitably
coupled by nonlinear forces, an approach to equilibrium
will ensue.! For a finite number of oscillators, deviations
from equilibrium are expected? and the system will
periodically return to its initial conditions because of
Poincaré recurrences. However, when the number of
oscillators is large, the Poincaré period is presumed
large? and deviation from equilibrium rare.? Ulam,
Fermi, and Pasta* tried to illustrate the expected
approach to equilibrium by observing the equipartition
of energy among normal modes for a system of one-
dimensional oscillators obeying equations of the type

Yi= (Yipr— 2y.~+y,-_1)+a[(y~'+1—yi)2— =y, (D

where ¢ runs over the positive integers from unity to
as high as 64. Here « is to be chosen sufficiently small
that the nonlinear terms can be treated as a small
perturbation. Using MANTAC I at Los Alamos, they
numerically solved Eq. (1) and then calculated the
energy in each normal mode as a function of time. These
calculations revealed no tendency toward equipartition
of energy among the normal modes. Various initial
conditions were used and cubic and, broken linear as
well as quadratic couplings were considered without
materially changing the outcome. Energy was shared by
only a few modes in a periodic fashion reminiscent of
the energy sharing between two vertical pendulums
hanging from the same horizontal string. A plot of the
normal mode energies as a function of time for a typical
case appears in Fig. 2.

* Present address: Physics Department, Johns Hopkins
University, Baltimore 18, Maryland.

1For a discussion of recent work on this problem and for
references to past work, see I. Prigogene, Proceedings of the
International Symposium on Transport Processes in Statistical
Mechanics (Interscience Publishers, Inc., New York, 1958).

2P, Mazur and E. Montroll, J. Math. Phys. 1, 70 (1960).

8 See, for example, the discussion by J. A. McLennan, Jr., Phys.
Fluids 2, 92 (1959), and his accompanying bibliography.

4S. Ulam, E. Fermi, and Pasta, “Studies of nonlinear

probfems 1,” Los Alamos Sci. Lab, Rept. LA-1940 (1955), hereafter
referred to as UFP.

The results of the computer calculations of UFP thus
appear to be in sharp contrast, if not in actual contradic-
tion, to the widely held notions concerning the approach
to equilibrium. Strictly speaking, there is no contradic-
tion here because the theories on this subject usually
attempt such generality that they make no effort to
categorize the specific types of nonlinear forces needed
to cause an approach to equilibrium. Thus, one could
argue that the simple algebraic nonlinearity of Eq. (1)
is not of the appropriate type. However, since the
nonlinear force that does give rise to equilibrium might
be expected to possess a power series expansionvalid
for small displacements, the nonlinear coupling of
Eq. (1) should be adequate to illustrate the approach to
equilibrium. Consequently, aside from any element of
contradiction, a number of physicists have been puzzled
by the failure of Eq. (1) to lead to equilibrium behavior.

This paper provides an explanation for the non-
equilibrium behavior of Eq. (1) using a perturbation
technique due to Xryloff and Bogoliuboff.®® Section II
states the basic reason for the failure of the UFP
solution and then illustrates the mathematical tech-
niques to be used by applying them to an interesting
linear problem which can be solved exactly. Section ITI
then solves the nonlinear equations obtaining qualita-
tive agreement with the computer solution. The final
section summarizes the main conclusion of the paper by
illustrating how they follow from the general form of
the Kryloff and Bogoliuboff series solution.

II. HARMONIC CHAIN

The reason why the UFP oscillator system fails to
approach equilibrium can be explained by such a simple
physical argument that it is worth exposing immediately
unincrusted by mathematical detail. This is particularly
cogent in view of the fact that the Kryloff-Bogoliuboff
technique is subject to question. Equation (1) can be

§N. Kryloff and N. Bogoliuboff, Introduction to Nonlinear
M e&']l;anics (Princeton University Press, Princeton, New Jersey,
1947).

8 N. Minorsky, Introduction to Nonlinear Mechanics (Edwards
Brothers, Inc., Ann Arbor, Michigan, 1947).
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transformed to normal mode coordinates a; via the
transformation

(N-1)
yi=(2/N)t Y, sin(klr/N) 2)
k=1
to read
(N—D
Fp= et Y Akrdits, (3)
r,8=1
where k=1, .- -, (N—1), where the 4., are determin-
able constants, and where
wi=2 sin(kr/2N), 4

provided yo=yx=0.

For purposes of discussion, we may suppose that the
normal coordinates x; describe the small amplitude
motion of a system of pendulums coupled by nonlinear
springs. We would like to determine whether or not the
pendulums described by Eq. (3) can exchange energy.
In order to do this, first consider just two pendulums
coupled by a linear spring. Here appreciable energy
exchange will occur only when the lengths of the
pendulums are very nearly equal, i.e., when (w;—w,)=0.
Stated another way, appreciable energy sharing occurs
only when one pendulum can drive the other pendulum
at its resonant frequency. Kryloff and Bogoliuboff
refer to this type of resonance as internal resonance.
When the coupling between the two pendulums is
nonlinear, one must expect a Fourier analysis of the
motion to reveal the presence of sum and difference
frequencies (mwi=tnsws). Consequently, in the presence
of nonlinear forces, we must expect internal resonance
and energy sharing when (#wi+#ase)=0, where #;
and %, are integers which may be positive or negative.
Thus, the only effect of nonlinearity in regard to energy
sharing is to generalize the condition for internal
resonance from (wi—wy)=0 to (Mw;+news)=0. The
question of how closely (#1w1+#x0;) must approximate
zero depends on the strength of the coupling & between
pendulums. As ¢~ 0, the frequency sums must also
tend to zero. In what follows, we generally assume that
a is very small and, therefore, we write the resonance
condition as an equality.

On returning to Eq. (3), we now expect appreciable
energy sharing only if the {w:} are such as to cause
internal resonance, i.e., only if

(N-1)

> =0 (5)

Joson

for some nonzero collection of integers {#;}. Numbers
oy, satisfying Eq. (5) for nontrivial {#} are said to be
linearly dependent on the integers. The question of
energy sharing for Eq. (3) then turns on whether or not
the frequencies w;, of Eq. (4) are linearly dependent on
the integers. Hemmer” has shown that the frequencies

7P. Chr. Hemmer, Dynamic and stochastic types of motion in
the linear chain, thesis, Trondheim, 1959,
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wy, of Eq. (4) are linearly dependent except for ¥ equal
to a prime or a power of 2. The only cases considered
by UFP were for N equal a power of 2. Thus, there are
no Eq. (5) dependency relations for the UFP chains and
hence no appreciable energy sharing. The austerity of
this conclusion must be altered slightly since the actual
values of @ used by UFP did not approximate a=0;
therefore, the equal sign of Eq. (5) must be replaced by
the “approximately equal to” sign and some energy
sharing occurs. From Eq. (4) we have that wi=ws/2
~ws/3=wy/4..., where the approximation becomes
poorer as one reads to the right. Thus, as the value of &
is increased from zero, one would expect appreciable
energy sharing between higher and higher modes. UFP
happened to choose a value of a such that appreciable
energy sharing occured among the first few modes.

These heuristic conclusions are supported in detail by
the Kryloff-Bogoliuboff calculations of the following two
sections. From the standpoint of mathematical rigor,
however, it is worthwhile to note that these conclusions
also find support in the work of Balescu® who shows that
the nonlinear Egs. (3) do not possess any analytic
constants of the motion other than the total energy
provided, among other things, that the w; are linearly
dependent. Consequently, when the w; are linearly
independent, as is true for the UFP chain, we must
anticipate the possibility of finding analytic constants
of the motion other than the total energy; and in
particular, one must anticipate the possibility that
each normal mode energy FEj; generates an analytic
constant of the motion ¢; of Eq. (3) given by

S=E()+ 3 o (1), ©)

=1

such that, for a1, Ei(f)=¢s. In what follows, we
confine our attention to the Kryloffi and Bogoliuboff
approach. We hope to discuss the full application of
Balescu’s work to these oscillator systems in another
place.

Since we have now made it amply clear that there is,
in general, no energy sharing without internal resonance,
we might be expected in some later section to solve a
nonlinear system of equations possessing internal
resonance and show that equipartition of energy
obtains. Unfortunately, except for the case of linear
forces, the Kryloff and Bogoliuboff method becomes
unmanageable in the presence of internal resonance;
consequently, this task must be left for subsequent work
on a computer. In view of these analytical difficulties,
it is worthwhile to ask whether or not a system of
pendulums weakly coupled by linear springs can
provide any insight into the question of equipartition
of energy. We now investigate such a linear system.
In order to provide maximum internal resonance, we
require that all the w; be equal. If we further assume

8 R. Balescu, Bull. acad. roy. Belg. Cl. Sci. 42, 622 (1956).
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mnearest neighbor coupling, the differential equations
governing the system may be written

= — o eto @1+ Xear), "

where again k=1, ..., (N—1) and where x;=xx=0.
Here the length of each pendulum has been adjusted so
that the coefficient of each y; is (—w?). Equation (7),
being linear, cannot exhibit ergodic behavior; nonethe-
less, for selected initial conditions, we might observe
equipartition of energy among the ), degrees of freedom
because of internal resonance.

We now compute the solution to Eq. (7) by using the
Kryloff and Bogoliuboff technique. That the method
leads to a correct solution for this case can be verified
by exact integration of Eq. (7). We begin by observing
that for a=0, Eq. (7) has the solution

x= Ay cos(wi+ o), (8

where Ay and ¢, are constants. If we now seek a power
series solution to Eq. (7) of the form

x,=Ax cos (wkH— <pk) + f: Ollxkl; (9)

=1
we encounter secular terms of the form
xp~1 sin(wi+ or).

Since we are interested in using a truncated form of
series (9), such terms are inadmissible. a3 is known to be
a bounded, multiple-periodic function, while these
secular terms are unbounded and aperiodic. Kryloff
and Bogoliuboff observe that these secular terms arise
because of a need to shift the frequency and vary the
amplitude of the zeroth order terms in solution (9).
In order to anticipate this amplitude and frequency
modulation from the onset, Kryloff and Bogoliuboff
suggest that one seek a power series solution of the form

wp=Ag costit 2, atxi(4y,- <, AdwTy, 1), (10a)
, P

=1

where
A= g oAy, ) (10b)
and
fr=w-+ i ator (A, e+, TN). (10c)

Here the x; are required to be periodic functions of
each 7; of period 2. The series (10a) is to be put into
Eq. (7). Equating the coefficient of each power of a to
zero leads to a system of differential equations which
formally can be solved sequentially for the x as
functions of the A; and 7. The Ay and wi; of Egs.
(10b) and (10c) are determined as functions of the
A; and ; at each step such that they eliminate secular
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terms. The resulting coupled differential Eqgs. (10b)
and (10c) can then be solved, at least for the linear
case, yielding A; and ; as functions of time. Carrying
out this calculation for Eq. (7) requires some straight-
forward, but laborious, algebraic and trigonometric
manipulations which we omit; to first order in a, the
solution is found to be

27 (-1 krm rsw
Xp= [—-] > sin(—) sin(—)
N r, 8wl N N

X [%,(0) cosQ i+ i, (0) sin®,£], (11a)

where

Q,=w—wa cos(rr/N), (11b)

and where x,(0) and #,(0) are the initial position and
speed of the sth pendulum.

Having found the solution to Eq. (7), we may now
determine if there is some initial state which leads to
equipartition. At =0, let all 4,(0) be zero and let all
#,(0)=0 except for x,(0)=1; thus, all the energy is
initially possessed by the end pendulum. Equations
(11a) and (11b) may then be written

2= (2/N) (Nil) sin{rx/N) sin(krz/N)

==l

Xcos{w—B.)¢, (12a)

where

B,=wla cos(rx/N). (12b)

It is obvious that Eq. (12a) satisfies the initial condi-
tions if one verifies that

(Nin sin(lrw/N) sin(lsw/N)= (N/2)8,s,

l==]

(13)

where &,, is the Kronecker 8. For convenience, we
assume that (NW—1) is even. Equation (12a) then
becomes for k odd

(N-D72
xp=4N"tcoswt Y. sin(rr/N)sin(krx/N) cosB, (14a)

re=1

and for & even

(N-1)/2

xp=4N-1sinwt Y. sin(rx/N)sin(rxk/N)sinB.t. (14b)
p==1

Each pendulum oscillates with a frequency equal to
its uncoupled frequency and with an amplitude which
consists of a sum of amplitude modulations, each
modulating at a distinct frequency. The total energy
Er of the pendulum system divided by «*/2 equals
unity. Let E; be the energy of the ith pendulum given
by

Ev=2"a¢+wn] (15)
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to zeroth order in «. Putting Eqgs. (14a) and (14b) into
Eq. (15) yields

(2E;/w?)= N—'4-{Multiple-periodic time
varying terms} (16a)

for i=2, 3, ---, N—2. For either end particle, we find

(2Eens/w?)=N"1(§)+{Multiple-periodic
time varying terms}. (16b)
By averaging Eqs. (16a) and (16b) over a near
period, we see that equipartition certainly occurs on
the time average. By itself, however, this is a rather
weak result since it does not preclude, for instance,
each pendulum in turn, having all the energy for
1/Nth of the time. However, when the number (N—1)
of oscillators is large, we evidently have the much
stronger result that each oscillator almost always
possesses 1/Nth of the total energy. Moreover, this
result is valid for a single system starting from a
definite state and there is no need to average the
motion over some ensemble of initial states as has been
required in the past.? These points can be understood
heuristically in the following way. The multiple-periodic
terms in Equation (16a) consist of several sums .S which
can be brought to the general form

S= NZNBI cos[£ cos(lm/N)J, an
=1

where each B; is a real number. Since most of the
numbers cos(lr/N) are linearly independent on the
integers, the sum .5 may be thought of as a sum of
random variables similar to that appearing in the
problem of a random walk. Consequently, as N — ,
we expect the probability distribution density for
values of S to be a sharply peaked Gaussian with
values of S at or near zero being overwhelmingly
probable.

A detailed proof of these points, modeled on the
arguments presented in Appendix IIT of the paper by
Mazur and Montroll,? will be given elsewhere along
with a more detailed consideration of this particular
linear system. Our main purpose here is to try to present
some insight into how internal resonance can bring
about equipartition of energy, and the multiple-periodic
amplitude modulation of Eqs. (14a) and (14b) certainly
illustrates a possible mechanism for providing equi-
partition.

III. ANHARMONIC CHAIN

We now apply the Kryloff and Bogoliuboff method to
obtain a solution to Eq. (3) which may be compared
with the UFP results. Equation (3) contains constants
Airs not explicitly defined. Consequently, we now
write out the normal mode differential equations in
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complete detail.

2af N-1 C[w(r+k)
Fp= —w,ﬁxk—l-—[ Z XrXIN—r—k sm[ ]
N} r=N—G—1) N

X { - 1+cos[1r7v—r] }
R e

+ kf o sin[w(k_r)][ ~ 1+cos[;—7;] } l, (18)

r=1 i

where k=1, 2, .-+, N—1, and where

wr=2 sin(kr/2N). (19)

Equations (18) need be solved only for values of N=2%,
where % is a positive integer, for which the w; are
linearly independent on the integers. We thus seek a
Kryloff and Bogoliuboff solution of the form

wp= Ay sintr+ X alar (71, - - ,7N-1), (20a)
1=1
where
7=l (20b)
and
9k=wk+ Z a’le. (ZOC)

=1

The x; are required to be periodic functions of period
27 in each variable 7;. The @, are constants independent
of time determined so as to eliminate secular terms. The
A and ¢ are constants determined by the initial
conditions. On comparing Eqs. (20) with Egs. (10),
one sees that Eq. (20) retain the capacity for frequency
modulation while discarding the mechanism for
amplitude modulation. The lack of amplitude modula-
tion, of course, means that one does not expect any
appreciable energy sharing between normal modes.
For large N and small %, however, we see from Eq. (19)
that

w1=w2/2=w3/3zetc. 5

hence, for these values of N and %, the w; are “almost”
linearly dependent and, strictly speaking, we should at
least allow for the possibility of some internal resonance,
i.e., amplitude modulation. To allow for amplitude
modulation, however, the Kryloff and Bogoliuboff
method requires that one solve coupled nonlinear
equations at least as difficult as Eqgs. (18) themselves.
We are, therefore, reduced to finding solution (20)
while bearing in mind its limitations.

On putting Egs. (20) into Eqs. (18), we find after
some laborious algebraic and trigonometric manipula-
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tions that to first order in «

o N~1
Kopp1=Agry1 ST+ { Y Avdon—r2-n

N <7

Q2D
X { cot[ i ] cos{*r,— T(2N~—r—-2£-1}]

2+1
+tan[( +1)
4N

} cos[r,-l-f(w-r-zz—n}}

N—21~2 (2+2)r
+ 2 ArAr+El+1{ —*cot[ ]
r==] 4:N

(2+1)
)

Xeos[ Tr—Trparps |~ tan[

I
Xcos[ 7,47 r+2z+1]}+ 2 A Asy s
r=1

Q241)r
X{ ——tan[ i ] cos[Tr— Torp1r ]

. [(25+ Dx

—cot

] cos[r,+rgz+1_,]} }, (21a)

Z\’T

@ Ir
{ 4 N,.zz{ % (‘Ot[——]
Ny 2N
Ir

N—-1
+% tan[g-\}} COSEZTN..J }*}- Z A4 (ON—7—32D)

! T N—}41

and

Zo=Agq sintu+

Ir
X { cot[ﬁ] cos[7rren—r—on ]

Ir
+tan[—2-1\~;] cos [Tr+T(ZN~r—2l)]}

N-20-1

I
+ ¥ A,A,Hz{ wcot[z—&:] cos[7r—Trpar]

]

Ir 1
-—tan[;N*] COS[’i‘y“ﬁl‘nwr] }‘i‘ 2 A,

r=1

Ir Ir
X { - tan[——-—] cosf rr—Ta1r |— cot[——-w]
2N : 2N

b}
Xeos[ 7o+ ra-r] }+Az2{ -3 tan[j“]
2N

-3 cet[%] cos[Zr;]} } (21b)

Here =i+ ¢ since =y, to first order in a.
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Let us now specialize solutions (21a) and (21b) to
the case N=32, a=1%, and all #:(0) and #:(0) equal to
zero except for x1(0). These, of course, are the conditions
for one of the solutions obtained by UFP. Since solutions
(21a) and (21b) are expected to be valid only when
relatively little energy finds its way into the higher
modes, we neglect all % and 4, for 22 6. Under these
conditions, Egs. (21a) and (21b) take the form

(214 1)?!’]

Xory1= A sy cos[wanad | +3% cot{

5
X{ - Z Ard rro1 COS[(O)r“"”wM—?.Hl)t]

r=]

11
+ ZI ArAm-{-l——r COS[(wr“{“wﬂ{»l—-r)t] }s (223')

Ir o
xu=Ay COSEwgzl:]-'l“gl-f COt[ﬁsz o 2: A ey

ram]

-1
Xcos[ {wr=wra)i 1+ 2 Ardspr

gl

2

A
Xcos[ (wrtwer)t] +~—§- cos[ 2unt]] }, (22b}

where I<2. Here we have neglected the tan terms of
Egs. (21a) and (21b) since they are small relative to
the cot terms, and we have deferred until later the
problem of determining the 4 in terms of %;{0). We
see that Egs. (22a) and (22b) already satisfy 2;(0)=0.

Before evaluating the A4y, we show that solutions
(22a) and (22b) exhibit a relatively short-term periodic
behavior independent of the wvalue of the 4, To
illsstrate this behavior, we calculate the energy in the
first normal mode as given following UFP by

E13£i3,-2/2+ (w12x12)/2. (23)

(This expression neglects the energy in the coupling
which is proportional to a and higher powers of «;
this neglect is no doubt justified if the resulting normal
mode energies always sum to the correct total energy.)
The calculation for the energy in the higher modes
reveals the same short-term perjodicity, and, therefore,
we perform the calculation only for E;. Putting Eq.
(22a) into Eq. (23) yields, to first order in a,

{2E1/co12) =4 12—-' %{A 12A2 COS[(ZGH b wz)t]
+ A 1A 245 cos[ (witws—w)t]
+ 4,444 cos[ (witwa—ey)t]
+ 414445 cos[ (witwi—wg)E]
441445 COS[(WF*"WS_&’S)!’:}S

where we set {we—w1)=w, {ws—ws)=wy, etc., when such

(24)

terms appear in an amplitude factor. Now from Eq.
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(19), we have
(2w1—wy) =4 sin(r/64) — 2 sin(x/32).

Expanding each sin term in Eq. (25) to third order in
its argument. we have

(Qwi—wa)=2(x/64)".

Making the same calculation for each frequency factor
shows that each, to third order, is an integral multiple
of 2(w/64)%. Equation (24) thus may be written

(2E1/w12) =4 12’- %{A 12A 2 COSQt'f‘A 1A 2A 3 cos3Qt
+ 414344 cos6Q+A14 .45 cos10Q¢
+A 14546 cos15}, (27)

where Q=2(w/64)%. Moreover, it is easy to show that
this periodicity holds also for the E, terms second
order in o where frequency factors like [2wy—wi—ws]
=2Q arise.

We now must evaluate the 4 of Egs. (22a) and
(22b) for the case in which all x;(0) equal zero except
21(0). Setting ¢=0 in Eqs. (22a) and (22b), one finds

%0141(0) = Aspi1 75 cot[ (21-+1)r/128]

(25)

(26)

5 1
X[— 2 A At 2 ATAZHI—T}, (28a)
r=1

r=1

and

201(0) = Ao1+57 cot[Im/64]

-1

b
X [ - Z ArAr+2l+ Z ATA2I—-1‘+AI2/2 ]: (28b)

r=1 r=1

where /<2, Now A;=a! is as large a value of 4 as it
is prudent to use in Eqgs. (28a) and (28b) without
closely investigating higher order terms in the a-series
expansion. The coefficient of a in a Kryloff and
Bogoliuboff series in general contains powers of the
Ap™ with m>n. Thus, setting Ar=a™! introduces a
diverging factor in the coefficient of @ which the
smallness of a” alone does not overcome. In view of
this fact, we chose to solve Egs. (28a) and (28b) by
setting 4;=1 and then computing the remaining A;
subject to the conditions x(0)=0, k=2, ... 3.
On carrying out this procedure, one calculates from
Egs. (28a) and (28b) that A,=—0.249, A4;=0.088,
A44=-—0.035, and A;=0.013, while x,(0)=1.35. On
putting these values of the 4, into Egs. (22a) and
(22b) and calculating the energy in the first three
normal modes via the equations,

Ek=xk2/2—|— (wk2xk2)/2 (29)

provides the data for the curves plotted in Fig. 1.
The UFP computer curves to be compared with Fig. 1
are presented in Fig. 2. All data are the same except
for the magnitude of x:(0) which equals 1.35 for the
series solution and 250 for the UFP solution. Quantita-
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F1c. 1. A plot of the energy in the first three normal modes for
N=32, a=1, and x;(0)=1.35 as predicted by the Kryloff and
Bogoliuboff solution. Initially, mode 1 possesses the total energy.
The energy in modes higher than mode 3 is negligible on this scale.

tively, then, the two solutions are not comparable;
qualitatively, however, they are similar. Both solutions
appear to be periodic with periods the same order of
magnitude, and for both solutions the amount of
energy sharing decreases monotonically with increasing
mode number. The greater amount of energy sharing
present in the UFP solution indicates the presence of
internal resonance for these first few modes. The
Kryloff and Bogoliuboff solution indicates its own need
to include internal resonance, i.e., amplitude modula-
tion, for this comparison by its evident divergence for

IV. CONCLUSIONS

The central purpose of this paper has been to expose
a reason for the failure of the UFP computer calculation
to reveal equipartition of energy. This purpose has
certainly been achieved. We now add one additional
note which also summarizes the reasons for the failure.
We have remarked that equipartition for very weakly
coupled oscillator systems can never occur as long as
the uncoupled frequencies are linearly independent,
i.e., as long as

Zk w0

for any nonzero collection of integers {#:}. Moreover,
we have heuristically connected this notion with the
concept of resonance remarking that 3 70,70 means
that the interacting oscillators cannot drive each
other at resonance. It is interesting to note that all
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these ideas are revealed in the form of the Kryloff and
Bogoliuboff solution. The solution to Eqgs. (18) of the
last section may be written in the form

o N-21-2

A4,
(any E:l 4204+1

COS(TT— Tr+2z+1) . [ﬂ' (7+k)]
X { sin
[w2;+12— (wr—wr+2l+l)2:l N

re kr
- sin[—]-— sin[——]-i— -, (30)
N N

where the resonance denominator

Xorp1=Aory1 07941+

[0-‘21+12"‘ (wr'—wr+2l+1)2]

has been explicitly written out. Equations (21a) and
(21b) of the previous section hid these resonance
denominators in the cot and tan factors. Solution (30)
clearly indicates that as @ — 0, there will be no energy
sharing unless some resonance denominator is zero, i.e.,
unless the uncoupled frequencies are linearly dependent.
Moreover, the form of the resonance denominators
almost demands an interpretation in terms of internal
resonance. Seen in this light, the lack of equipartition
of energy for the “linearly independent” UFP oscillator
system is a property only of the form of the Kryloff
and Bogoliuboff solution and hence might be expected
to be independent of the convergence properties of
these solutions.

That the UFP oscillator systems cannot exhibit
equipartition is clear both from our heuristic arguments
and the basic work of Balescu.? It is not expected that
this result will be affected one way or another by the
convergence questions regarding the Kryloff-Bogoliuboff
series. The validity of Sec. ITI, however, does rest on
such questions. Unfortunately, no really satisfactory
answer has been given to the question of convergence.
The author chooses to believe that the similarity of
the series solution to the accurate computer solution is
an indication of its validity, but this is not offered as a
compelling argument. The validity of the solution
found in Sec. III could most easily be verified using a
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F1G. 2. A plot of the energy in the first three normal modes for
N=32, a=4, and x:(0)=~250 as computed by UFP. Initially,
mode 1 possesses the total energy. The energy in modes higher
than mode 5 is negligible on this scale.

computer, and it is hoped that this may be accomplished
in the near future.

As to the future, by using as a guide the linear
problem of Sec. II, the form of the Kryloff and Bogoliu-
boff series, and the criteria given in the work of Balescn,
it should be possible to find a system of differential
equations which can be solved on a computer to
demonstrate equipartition of energy. Indeed such
calculations might shed light on the whole question of
the approach to equilibrium. Perhaps even more
interesting, however, is the possibility of generalizing
or modifying the Kryloff and Bogoliuboff technique to
cover the case of internal resonance. Even a formal
solution to the problem, independent of the covergence
question, would be useful in view of the fact that a
computer might be used to establish the range of
usefulness of such a solution.
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A formula is derived which expresses the perturbed scattering amplitudes of a combination of two arbitrary
cylinders as a function of the unperturbed scattering amplitudes of the individual cylinders. The formula
is valid when the spacing of the scatterers is large compared to their dimensions. It involves derivatives
of the scattering amplitudes with respect to the angles of incidence and of observation. Interaction terms
of degrees ¢}, d71, and d~t are taken into account, where d is the spacing. Verification is obtained in a
special case. The result is employed to calculate the total scattering cross section.

1. INTRODUCTION

HE present paper deals with the diffraction of

plane electromagnetic or acoustic waves by a
pair of parallel cylinders of arbitrary shape. The
diffraction by each cylinder, in isolation, is assumed
known, and the diffraction by the configuration is
calculated explicitly, in terms of these data. An approxi-
mation is involved which will be described below.

The question of multiple scattering has already been
treated, but in less detail, by a number of writers. A
brief sketch of the history of the problem follows, with
emphasis on those treatments of the problem whose
accuracy increases with the spacing. We recall the work
of Reiche and Schaefer,! who were the first to have
given a wave theoretical discussion of the finite grating
of circular cylinders. These authors neglected the
interaction between the cylinders; their work was
therefore valid, in principle, in the limit of large spacing.
A very general expression for the diffraction by an
arbitrary assemblage of circular cylinders was given by
Twersky,? who took all orders of interaction intoaccount.
The method depended heavily upon the separability of
the circular geometry, and the most general form of the
result was too complicated to be discussed. However,
Twersky found that, if he proceeded to the limit of
large spacing, he could simplify his result immensely
and achieve a perspicuous discussion of the correction
to single scattering. This work gave a correct account
of terms of degree d—* and d! in the spacing.

This success led to a general investigation of the
large spacing approximation by Karp,® who showed
that for cylinders of arbitrary shape, the leading terms
of the interaction correction could themselves be ex-

* The research reported in this article was sponsored by the
Air Force Cambridge Research Center, Air Research and Develop-
ment Command, under contract.

{ Present Address: Dept. of Engineering Science, The Florida
State University, Tallahassee, Florida.

1F. Reiche and C. Schaefer, Physik 35, 817 (1911).

2V Twersky, J. Appl. Phys. 23, 407 (1

3 S. Karp, “Diffraction by a combxnatxon of cylinders,” Proc.
McGill Symposium, McGill University, Montreal, Canada, June,
1953. AF CRC-TR-59-118(11). AST1A #AD211500.

pressed explicitly in terms of noninieraction or single
scattering results, the latter being regarded as given. In
fact, the interaction term could be regarded as being
composed of the response of each cylinder to a plane
wave arriving from the direction of the other cylinders.
The techniques of Karp® were exploited by Karp and
Radlow* and by Karp® in the analysis of a grating of cyl-
inders. Similar methods were used by Karp and Russek®
in expressing the approximate solution to the problem of
diffraction by a wide slit in terms of the well-known
solution for the half-plane problem.

The purpose of the present paper is to extend the
work of Karp?® so as to take into account higher order
terms. Just as in reference 3, the cylinders are arbitrary,
and the scattering by each cylinder in isolation is
assumed as given. But, it is found’ that even the higher
order correction terms can be calculated generally,
simply, and explicitly in terms of the single scattering
data used in reference 3 for calculation of the leading
terms. This is the principal result of the present paper.

The general calculation was carried out so as to
include all effects of order of magnitude 4%, 47, and
d~%, where d is the spacing of the cylinders. For purpose
of comparison, Twersky’s calculation for a pair of
circular cylinders was continued so as to include terms
of order d-¥; this special calculation by the repeated
application of additional theorems was then shown to
agree with the general result of the present work, when
the latter result is specialized to the case of circular
cylinders. The result is used to calculate the total
cross section for a pair of circular cylinders as a function
of the spacing and the known unperturbed (or non-
interaction) scattering amplitude functions.

4S. Karp and J. Radlow, IRE Trans. on Antennas and Propaga-
tion. AP-4, No. 4 (1956).

5S. N. Karp, N. Y. U. Institute of Mathematical Sciences,
Division of EM Research, Research Rept. No. EM-85, October,
1955. See also Phys. Rev. 86 586(A) (1952).

¢ S. Karp and A. Russek, J Appl. Phys. 27, 886 (1956).
(’N R. Zitron and S. N, Karp, Bull. Am. Phys. Soc. 3, 184
1958).
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MULTIPLE SCATTERING. 1

2. STATEMENT OF THE PROBLEM AND OF
THE METHOD OF ANALYSIS

We would like to know the scattering pattern of a
combination of two infinite parallel cylinders in terms of
the scattering patterns which these cylinders would
have if they were isolated from each other. In other
words, we want to obtain a functional relationship
between the unperturbed and the perturbed scattering
patterns of the cylinders. Such a relation is desirable
because it simplifies the calculation of the pattern for
the combination. If we can calculate the unperturbed
patterns, we need only insert them in this relation to
obtain the perturbed patterns. The relation is useful,
moreover, even if the shapes of the cylinders are so
complicated that we cannot separate variables or if
calculation by separation of variables is too tedious.®
Also, in such cases, the unperturbed patterns might be
measured experimentally for all angles of observation
and these unperturbed patterns might then be sub-
stituted into the relation obtained here to yield the
perturbed patterns.

The situation is the following: A plane wave of unit
amplitude is incident upon the two parallel cylinders
4 and B (Fig. 1).

To avoid ambiguity in the definition of the spacing d,
we define a coordinate system for each cylinder. Let 4’
and B’ be circular cylinders circumscribed about 4 and
B, respectively. Let a and b be the respective radii of
A’ and B’. We shall let Z, be the axis of A’ and Z; be
the axis of B’. The problem is two dimensional, and
we shall operate in a plane perpendicular to the Z axes.
The respective intersections of this plane with the Z,
and Z; axes will then be the origins of thie coordinate
systems of A and B. We can now define the spacing d
as the distance between the axes of 4” and B’, that is,
the distance between the two origins (Fig. 1).

We make the following assumptions:

(1) The individual complex scattering pattern is
known when each cylinder stands alone in space.

(2) &>\ where \ is the wavelength of the incident
wave.?

(3) d>a and d>b.

Our object is to find a functional relation between
the scattering pattern of the combination and those of
the isolated component cylinders. This cannot be
accomplished by simple superposition of the unper-
turbed patterns of the components since the individual
pattern of each component cylinder is modified by the
field scattered by the other cylinder. We must, therefore,
consider the interaction.

& See reference 4 for the use of an even less accurate relation
for theoretical purposes.

? Numerical calculation in reference 5, which are based on a
less accurate procedure, showed that d could be as small as one
wavelength without impairing the accuracy materially. The
present result would, therefore, allow an even smaller spacing,
provided the cylinders are kept sufficiently small compared to the
spacing.
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F16. 1. Plane wave incident upon two parallel cylinders.

We shall assume that the response U, of each
cylinder to a plane wave is of the form

& n 6’00
A fa(6,60)

rt n=0 7

(1

for large 7,

where 7 is the distance from the axis of the circumscribed
circular cylinder, @ is the angle of observation, and
is the angle of incidence. Both 8 and 6 are measured
from the % axis of each cylinder. The x axes are collinear
with 4.

As will be explained below, at a sufficiently large
distance from the cylinder, the scattered field U,
resembles a plane wave. This approximate plane wave
elicits a response from the other cylinder, perturbing
its scattered field. This response also has the form (1)
and in turn perturbs the field scattered by the first
cylinder. We can carry out successive calculations for
this process until the desired order of accuracy is
obtained. When the perturbed patterns have been
calculated, they can be superposed.

We shall deal, in this paper, with interaction terms
of degrees d—%, 47, and d—%. The procedure involves a
new kind of expansion of the waves scattered by each
cylinder about the origin located in the other cylinder.
In order to ensure that all terms up to order 4% are
contained in the result, we must include them in the
first expansion, We then find that the field scattered by
a given cylinder can be represented, in the neighborhood
of the other cylinder, as a plane wave, plus additional
terms which are recognized as derivatives of a plane
wave with respect to its angle of incidence. The simple
way of expressing the higher-order excitations is what
enables us to calculate the higher-order responses
conveniently.

3. EXPANSION OF THE SCATTERED WAVES IN
TERMS OF PLANE WAVES

A. Expansion of the Response of Cylinder 4 in
a Neighborhood of Cylinder B

Let us consider what happens when a plane wave is
incident upon A. The wave function for a plane wave
(Fig. 2) is

U= explik(x, cosfyty. sino) 1. )
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F16. 2. Coordinate system for
cylinder 4.

The wave scattered by A4 in response to the plane
wave is represented by an asymptotic solution of the
reduced wave equation.

D.E. (A+E)U=0. 3)

The boundary conditions are such that the diffraction
problem for each cylinder, and for the combination, is
well posed. They may be, for example,

(@) U=0
B.C. {or (b) dU/dn=0 @

or (c) CU+D@QU/dn)=0,

where U /dn is the normal derivative of U, and C and
D are constants, Alternatively, one or both of the
cylinders may be filled with dielectric materials.

The radiation condition for an outgoing wave, i.e.,

oU
lim r*[——-ikU]=0, (3)

T® or

is imposed on all scattered fields which occur.
The solution of (3) has the form

U=UcU,, ©)

where U is the incident field and U, is the field scattered
by cylinder 4. We assume that U, may be represented
in the asymptotic form

a0

Uume ;a[fo"o(ﬂaﬂo)‘!‘{l—(oaﬂo)‘f" o(ra‘z)]- @
Ta

o)t

The letter “a” signifies that the variable in question
refers to cylinder A, and the superscript “a0” signifies
that the pattern is unperturbed. If, as we have assumed,
B is sufficiently small in relation to its distance from 4,
then the wave scattered by A4 is practically a plane
wave in the neighborhood of B, and we may imagine
such a wave incident on B. We can demonstrate an
explicit representation of this approximately plane
wave by expanding U, in a neighborhood of B. We
shall express the expansion in powers of d~%in a rec-
tangular coordinate system with origin at the center of
B’ and carry out the calculation up to order d-%. The
calculation proceeds as follows. Let P be a point in the
neighborhood of B (Fig. 3). Let r,=the distance from
the axis of 4’ to P. We see from Fig. 3 that r,=[(d+x»)?
+4:*1, and we shall henceforth omit the subscripts “a”,

ZITRON AND S. N.
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Fi16. 3. Coordinate system for expansion in a neighborhood
of cylinder B.

“p”’ as a matter of convenience. Then
iky?  ikayt— byl
pikr = eik(d+z)[1+_l+__y__4__y_

+0(d‘3)], (8)
2d a2

ri= (24 2xd+x2+y?)~t
= (1/d)— (x/2dH)+ 0%, (9

—3
2

ri=d-i1~§(x/d)+0(d7?)]
= (1/dH)+o(@H, (10)
6,=arctan(y/d+x)
= (y/d)— (xy/d))+0(d~%), (10a)
12(8,60) = f-°(0,80)+[Dsf*°(0,60) 16
+[Dgfa®(0,60)1(6°/2)+- -+, (10b)

where Dy=09/00. By using (10a), we can rewrite (10b)

in the form

F222(6,80)= £2°(0,8)+[Dsfn(0,80) 1 (/2)
—[Def*(0,60) 1(xy/d?)

+[Ds f22(0,60)1(y?/24*)+0(d~%). (11)

On substituting Egs. (8)-(11) into (7), we obtain
ikyr ikey'—ihty"

S= eik(d+x)[1—|L t
2d

1 x o)
[;‘;d‘# ]
X< [£6%(0,80)+Ds f6*(0,60) (y/d)+ 0(d—2) ]

+o (d—-")]

1
+;l_%[f 1°°(0,60)+ 0(d~) ]

f62°(0,80)
0—pik(d+a)y —_
Ud=e [ -
(=t iky?) Jo2(0,80) +3Def(0,600)+/1(0,60)

1
dai

+0(d*9)]. (12)
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We have thus obtained the field scattered by 4 as
it appears in a neighborhood of B. We must now carry
out the corresponding expansion for the field initially
scattered by B. Note that the leading term of (12) is
a plane wave, i.e., a constant multiple of %%, as we
explained earlier.

B. Expansion in a Neighborhood of A for the
Wave Scattered by B

The same type of procedure as that used above gives
us the expansion in a neighborhood of 4 of the wave
initially scattered by B. The expression here correspond-
ing to (12) is

fo®(r,00)
&
 3(atiky?) fo* (m,60) — yDo o™ (,80)+ f1**(,B0)
i d*

Ugd= eik(d—z){

+ G(d‘é)]- (13)

The unperturbed fields scattered by either cylinder,
(12) or (13), are the excitations of the other cylinder,
We assumed, to begin with, that we knew the unper-
turbed response of each cylinder to a plane-wave
excitation for all angles of incidence. If (12) and (13)
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were plane waves, we could calculate the responses for
the second scattering.® (12) and (13), however, are
not plane waves, but this impediment does not prevent
the calculation of the effect of further scattering. The
reason is that (12) and (13) may be represented in terms
of plane waves by appropriate substitutions. This
representation, which will enable us -to calculate
successive scattering, will now be given.

C. Expression of the Scattered Waves in
Terms of Plane Waves

We can reduce the further scattering of singly-
scattered waves to the scattering of plane waves by
expressing (12) and (13) in terms of plane waves and
derivatives of plane waves. On noting that a plane wave
is represented by

v(8o) = exp[ik (x cosBo+y sinfo) J, (14)
we observe that
thye®==1ppo(0) (15)
—ikye**=yaq(m) (16)
k(= x-+iky?)e? = vogop(0) 17
ik (x-+tiky?)e %% = vogao (). (18)

Substitution of (15) and (17) in (12), and of (16) and
(18) in (13) yields the following representation of the
scattered fields in terms of plane waves:

Up= eikd[
a

2(0)£6%(0,00)  ( 1/2ik)[ Deo*v(0)1£6*°(0,80)+ (1/ik) [ Do (0) 1Ds 00 (0,80) +2(0) 1 (0,00)

o(m) fo®(m00)  (1/2ik)[Dov*(w) 1fo* (m,80) + (1/ik)[ Dooo () 1Do fo** (m,00) +v(m) /i (m,00)

P + @(d—*)] (19)

=
i

D. Elimination of f,

We note that the numerators of (19) and (20) are
sums of terms, consisting of plane waves and their
derivatives, namely, the v’s, and coefficients which are
independent of 6, namely, the f’s. We see that these
formulas are expressed in terms of both f; and fu.
(For the meaning of fo and f; see reference 7.) An
advantage would result from the elimination of f,
since we could then express the result in terms of the
scattering amplitude of the far field without having
to know the scattering amplitudes of further asymptotic
terms.

We eliminate f, by expressing it in terms of fo.
This can be done by means of a recursion formula. The
recursion is obtained by substitution into (3) of the
assumed asymptotic! representation (7) of any radiat-

10 This would be the method used in reference 3.
1 The representation is asymptotic for large 7, 8, and % being
held fixed.

” (‘)(d—*)]. (20)

ing solution of the reduced-wave equation. When we
equate the corresponding inverse powers of 7, we find
that

fo=(1/2km)[(n—=3)*fortDifra]. (21)

This recursion is useful, also, for calculations of
higher degree than we are considering here. Since we
want to express fi in terms of fo, we need use it only
for the value n=1.

fi=(1/2ik)(% fot- D fo .

This is a different type of recursion from that obtained
for large k£ by Keller, Lewis, and Seckler'? although it
is similar in form.

If we now substitute (22) into (19) and (20), we
obtain

(22)

127, B. Keller, R. M. Lewis, and B. D, Seckler, Communs.
Pure and Appl. Math. 9, 207 (1956).
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Ul= eikd[ 2(0)/6°(0,60)
d

(1/ 2ik)[ Dog?(0)1/2(0,00)+ (1/i%) [ Docv(0) 1Do f02°(0,60)+ (1/2ik)v(0) [} fo2° (0,80) + Do fo (0, 00)]
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+ou)

a3
23
L =
Fi]
(1/21k)[D602v(1r):] | £o(r,60) + (1 /%) Dagv(w) 1Ds fo¥(mr,00) + (1/ 2ik)v(w) [ fo*(m,00) + Dg? f ¥ (, 00)] Lo ;)]
d
(24)

Expressions (23) and (24) represent the responses of
the cylinders to the original incident plane wave and
these responses are given near the other cylinder in
terms of the plane waves. Expressions (23) and (24)
are also excitations for the second scattering. Successive
application of these formulas will yield the desired
degree of interaction.

4. CALCULATION OF THE INTERACTION

We have expressed in (23) and (24), the fields singly
scattered by A and by B, as they appear in a neighbor-
hood- of the second scatterer and have, moreover,
expressed them in terms of plane waves and derivatives
of plane waves. We may now imagine this combination
of plane waves and their derivatives to be incident
upon the second scatterer. The linearity of these
expressions enables us to say that the responses of 4
and B to incident derivatives of plane waves are equal
to the derivatives of the responses of 4 and B to the
incident plane waves. Since we already know, by
assumption, the unperturbed responses of 4 and B to
an incident plane wave, we have reduced the second
scattering to the previous case, namely, the first
scattering.

If we carry out this process to the extent of three
successive scatterings, we can obtain interaction terms

Fi1c. 4. Normalized coordinate systems.

of degrees d—*, -, and d—%. The terms of degree d—*
result from double scattering, those of degree 47!
result from triple scattering, and those of degree d~
result partly from double and partly from quadruple
scattering.

For the sake of simplicity, the following results will
be expressed in a normalized coordinate system (Fig. 4)
with a common origin midway between the origins of
the coordinate systems located in the scatterers. As a
matter of convenience, we shall omit the subscript zero
from the f’s.

Let a be the angle of incidence of the original plane

wave. The perturbed patterns will then be
fa (0 a) e—tkid cosafao(e a)

N eu‘c}d cosaetkdfbo (,,,a)f.w (0,.”-)
T di
e—ik}d eosaeikdeaﬂ(O,a)be (ﬂ.,o)fao (0’7'.)

]
+

eik}d cosaeikad

+Tf 0 (r,x) f2(0,r) f* (,0) f(8,m)
eik}d comeikd
0 (7r,0) Dag? f*0 (6,7
() Duf0)
+2Dofb0(7r’a)D90fa0 (0,7[‘) +[%fb0 (7!',(!)
+Dg?f¥(wa) ] 1= (6,))+ 0 (@Y, (25)
and
e—'ik}d cosaeikd
Jb(B,0) = g4 s f0(f,ar) - 1(0,2) 1%(6,0)

eikid cosaeikZd

() 060

o—ikhd cosagikdd

+Tf =(0,02) f2(,0) f*°(0,m) f*(6,0)

& tkkd cosaeikd
a0(0,c) Doo® f2(6,0
(0D 00
-+2D s f0 (O,a)D 90f w (010) + [‘%f a0 (0,&)

+Dgf(0,2)11*(8,0))+0(@). (26)
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We note that the successive powers of 4% in (25) and
(26) represent the various degrees of interaction. The
scattered far fields resulting from the interaction will
have the form

exp| 1&{r-+1d cosf
v o, e
a
and Lik(r—3d cost)]
EXP| te(r— 34 COSl
et ba),  (9)
r

where f*(f,a) and f*(9,a) arethe perturbed scattering
amplitudes given by (25) and (26). The sum of the

g‘ikr
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scattered fields has the following far-field representation
which is the sum of {27) and (28).

U=UatUs= (e¥ /) (2/xk)le i "OF (G0}, (29)

where F(8,a) is the scattering amphtude of the combina-

tion of cylinders. We see by comparison with (27} and

{28) that

F{0,0)= (wk/2)tei*19 exp(ikid cosh) f*(8,c)
+exp(—ikid cosf) fo(6,e) ] (30)

A more explicit formula for the far field is obtained by

combining (25), (26), (29), and (30). The far field
can then be written as follows:

UL ; explikid (cosf—cosa) 1 f9(8,a)+exp[ —ikid (cosd—cose) | /2(8,a)

¥

etkd

+;;[6Xp[ik%d(cow+cosa)]f () fo2(60,m) +expl ~ ik3d{cosf-+-cosa) 11*(0,0) f*(5,0) ]

k2d

+—-[6Xp[zk~‘*d (cosf~—cosa) ] f*(0,a) f¥(x,0) f (B,W)+exxr>[“%k%d (cosf—cosa) 1% (x ) f9(0,x) 2(6,0) ]

e3d

+—d;£exp£ik%d(cosa+cosanfw(m)fw<d,w)fw<«,0)fa°<e,«>

~+exp[ —ikjd(cosf+cosa) /°°(0,a) /4 (x,0) f(0,x) f*(6,0) ]

explikid (cosﬁ+cosa):}(

2ikd}
+exp[—-ik%d(ces&+msa}j(

We have presented in (31) a relation between the
scattered far field of the combination and those of the
component cylinders. We wish to point out that a
similar relation holds between the corresponding fields
at all points of space. But this relation will not be
detailed here.

5. SPECIAL CASE. SCATTERING BY TWO
CONDUCTING CIRCULAR CYLINDERS
The abstract relations obtained above can be
verified in the special case of scattering by two parallel,
arbitrary circular cylinders 4 and B with corresponding
sets of parameters ¢ and &. For a single cylinder, say 4,
we have l

Ud= X inCo O ke, (32)
prr—

where C,¢ is the appropriate scattering coefficient for

T} Dog® f{0,) 42D f% (o) Dig f° {&x))
+{31(r,@) + D 2w 0)} f2(8,7)
12(0,0) Do f0(8,0)+2D5 f2(0,0) Doo f2(8,0)

+o(@d-Hh (31)

+{3/°0,2)+Dy*f*(0,0)} /*(6,0)

any of the usual boundary conditions; e.g., if the field
vanishes on the cylinder’s surface r=g, then C,®
= — J . (ka)/ H P (ka) ; if the normal derivative vanishes,
we replace the functions J.(ke), H,V(ke) by their
derivatives with respect to their arguments, etc. The
use of the asymptotic form of H,®{%r,) in (32) yields
the far field

gilcm
Ub= { i 14 ) Z C zzgmiﬁg-a}}

9
("a) ¥

gakm

a8, ),
(ra)f( )

where the function in braces is the unperturbed pattern.
Similarly, for cylinder B (whose radius and boundary
conditions differ in general from those of 4), we replace
a by b in (32) and (33).

(33)
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The corresponding perturbed pattern may be
obtained by specializing the general series of “Neumann
type” in Eq. (3) of reference 2; see reference 13 for a
derivation :of the series and for a .discussion of its

2\t
S (8,0) =exp[ —ikid cosa]e—ffl4(—k) 3 CseinG—a
i n

exp[ik3d cosa]
+

ai
—ikL ik2d
+exp[ tk3d cosa e el ( 2
d wk
exp[ik4d cosaJei*sd
+ "

X T (= 1)Cpnrein =0

nttt

ZITRON AND S.

N. KARP

physical significance. If we now expand this result in
inverse powers of d and retain all terms of degree d—3,
we find (with reference to an origin midway between
those of the cylinders)

2
e—-i:r[?(_)z (__. l)n—lcnbe—-'imx Z (__. 1)Cn1a€’:"’(0_'")
wk/ n n’
3
—) S e~ e

2 2
6""'(—-]-6) 3 (=1)IC ke ina 3 (— 1) -IC, 0 X (— 1) e
T n n' n'’

exp[ikid cosa Je®d ¢—im2 4 2
e (“)Z (=D)Catene T (= DL (n—n)*~1]Cwoe™ @0+ 0(d), (34)
d; Zik 1rk n n’
2\%
Jo?(6,0) = exp[ik5d cosa Je—*/ 2( ~—k) 2_Cbeint=—=
T n
exp[ik3d cosa e 2 . _
Jr 2 e——wl2(__)2(_l)cnae—ma Z (_ I)Cn,bean’ﬁ
at wk/ = n
exp[ik3d cosaJe*2? 2\? _ .
4 6.—13#/4(_) Z (_ l)nCnbe—-zmx Z (_ l)n'—lcn'a Z (__ l)cn“bem"o
d Tk n n’ n’!
exp[ —ikid cosa]e®®? 4 2 \? ‘
+ z e—m(_) Z (_ l)cnae—-'ma z (_ l)n'—lcn,b Z (_ 1)n”—lcn”a
d% 7|-k n n’! -
X 5 (= 1)Cotein
exp[— k3d cosa Je*d e=/2 ¢ 2 . .
i () £ caorm £ (—0L0-m— It o, 39)
d? 2tk \7k/ » n’

which we shall first compare with the expansion of the
closed-form approximation given in Eq. (6) of reference
2. That approximation was first obtained by keeping
only the largest term of each order of scattering and
hence its expansion is not quite as accurate as (34) and
(35). To carry out the comparison, we specialize (34)
and (35) to the case of two identical cylinders (a=35).
Then, comparison shows agreement so far as the non-
interaction terms and the terms of degrees d—* and d—!
are concerned. The first of our terms of degree d—%
agrees with the term of order d—} in the expansion of
Twersky’s result. But our second term of degree 4%
is new. This is to be expected for the following reason.
The closed form referred to above is obtained by

1BV, Twersky, J. Acoust. Soc. Am, 24, 42 (1952).

summing the leading terms only, of the successive
orders of scattering, that is, the successive bounces.
Our term of degree d—%, on the other hand, contains
higher-order contributions from the second bounce, in
addition to the leading term of the fourth bounce.

The procedure used above for obtaining (34) and
(35) is long and tedious. These results need not be
obtained by that procedure. The use of the abstract
formulas (25) and (26) simplifies the calculation
considerably and should do the same in any other case
where the scattering problems for the component
cylinders are separable. All we need do is substitute the
specific unperturbed patterns f®(6,c) and f¥(6,a)
into (25) and (26), respectively. The results follow
immediately and agree with (34) and (35), respectively.



MULTIPLE SCATTERING. I

6. EXPLANATION OF THE RESULT

Expression (31) for the scattered far field of the
combination of two cylinders appears, at first glance,
to be complicated. However, it is not as abstruse as it
seems. A closer examination of these expressions
reveals the significance of these various terms and
factors. We note first that the terms are grouped in
increasing orders of accuracy. We note also that they
are grouped in pairs. The first members of each pair
represent fields ultimately scattered by cylinder 4,
while the second members of the pairs represent fields
ultimately scattered by cylinder B. The first pair
corresponds to single scattering while the other pairs
correspond to multiple scattering. The factors

exp(£sk3d cosh)

represent the phase differences for the scatterers relative
to the point of observation, while the factors

exp(=£7kid cosa)

take into account the phase of the incident wave at
the center of a scatterer when the incident wave has
zero phase at the origin. The f’s containing a  depend-
ence are scattering patterns, whereas the f’s containing
specific values for 8 are excitation factors accumulated
in the multiple scattering. We note also that the factors
of the form e*"? where #=0, 1, 2, 3 refer to the increase
tkd in the phase of a wave in going from one scatterer
to another and that # signifies the number of bounces.
As an illustration of the above remarks, let us
consider some of the terms in more detail. The term

(e**7 /%) exp[ ik3d (cos8— cosa) ]f*(0,a)

would occur in the case of no interaction, i.e., in the
limit of infinite spacing. The factor exp[}:kd(cos6)]
takes account of the fact that the origin is not at the
center of A. The positive sign preceding cosf shows
that the scattered wave came from cylinder 4. The
negative sign in the exponent of the factor exp(—zk3d
Xcosa) shows that cylinder 4 received the initial
excitation. It gives the phase of the incident wave at 4.
The term

(e®*7/r*) exp[ikid(cosf+cosa) | fir,o®fio,m

differs from the first term in the following respects.
The positive sign in the factor exp(+1:kd cosa) shows
that cylinder B received the original excitation as
does the factor fir,»®. The phase factor e?*¢ represents
the increase of the phase of the wave in going from B
to 4.
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1

F1c. 5. Plane wave normally incident upon two
parallel circular cylinders.

We shall now explain a typical term of the last
square bracket. The first term in the last square bracket
of (31) represents the scattering by A of a term of
order d—% initially scattered by B. The phase factor
e*d takes account of the travel of this wave from B
to 4.

The positive sign preceding cosa shows that cylinder
B was excited initially. The differentiation of the
scattering amplitudes shows the effect of a higher-order
excitation of 4 by the field initially scattered by B,
since the higher-order response of B, (which acts as an
excitation for A4), is representable, near 4, as a deriva-
tive of a plane wave with respect to angle of incidence.

The explanation of further terms in the final result
proceeds on the same lines as the explanations given
above. We omit these explanations for the sake of
brevity.

7. TOTAL SCATTERING CROSS SECTION OF A
COMBINATION OF TWO IDENTICAL
CIRCULAR CYLINDERS

We consider a plane wave normally incident on a
pair of identical circular cylinders. The circumstances
are illustrated in Fig. 5.

The computation of the total scattering cross section
¢ of the two identical circular cylinders is facilitated by
the use of (30) in conjunction with the following well-
known theorem!415:

o=—(4/k) ReF(n/2, 7/2), (36)
where F(f,e) is the scattering amplitude (30) of the
combination. The phase factors are simplified for the
values 6==/2, a=m/2. The fact that the cylinders are
identical enables us to write f'=f®=f%, Further
simplifications result from the geometrical symmetry
of the problem, namely,

fOm)=fx0), f(x/2,0)=0,7/2)
=flx,x/9)=f'(x/2,).

The total scattering cross section in terms of the

14V, Twersky, J. Appl. Phys. 25, 859 (1954).
18 C. H. Papas, J. Appl. Phys. 21, 318 (1950).
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spacing is then

o=—(4/k) Re| (2xk)teira

ed 1

8. ADDITIONAL REMARKS

It is clear that interactions of degree greater than
d~* can be computed by the inclusion of more terms in
the expansions used to obtain these results.

It is also clear that the method applies to cases of
more than two scatterers, but the computations would
be more tedious than in the case of two scatterers. The
computations might be simplified by using a ‘“con-
sistency”” method employed in reference 3 rather than
tracing the successive scattering in detail. This method

Y a(r(0)me(o3) v (0] )ore(0)
(o3 )ir(0) Jp(03)) +oun] |
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involves a steady-state point of view. The response of
each cylinder is expanded in a neighborhood of each of
the other cylinders. Each cylinder will then be excited
by the incident plane wave and by an approximately
plane wave from each of the other cylinders. These
considerations introduce certain undetermined coeffi-
cients which can be determined by imposing the
requirement that the fields scattered by the various
cylinders be consistent with one another. Evaluation
of the coefficients will provide the solution.
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The method of Part 1is extended to cover the three-dimensional scalar problem for two bodies of arbitrary
shape. All interaction terms of order d~* and 42 are given.

1. STATEMENT OF THE PROBLEM

HE method employed previously in the case of
multiple scattering of plane waves by two widely
spaced cylinders of arbitrary shape can be applied,
also, to the corresponding three-dimensional scalar
problem for two bodies of arbitrary shape. The assump-
tions of spacing large compared to the wavelength and
the dimensions of the bodies and that the individual re-
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sponses of the scatterers are known apply also to this
case.

The situation is the following. A plane wave of unit
amplitude

u=exp[ik(x sinfy cospo+y sinfy singe+2 cosfo) ], (1)

where 6, and ¢ are the angles of incidence (see Fig. 1),
is incident upon the combination of two bodies. The
response of each body in isolation to the incident plane
wave is of the form

eﬁcr hod f n (01807¢’¢0)
U=— ——. @
r n=0 re

Here we are referring to spherical coordinates, 7, 6, ¢,
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such that
x=7 sinfd cose,

y=r sinf sing,

(2a)

g=7 cosf.

The letters x, y, 3 are Cartesian coordinates of a
point P with respect to a coordinate system located
appropriately. The quantities 6y and ¢, which specify
the direction of travel of the incident wave can be
thought of as the colatitude and longitude, respectively,
of a point on the unit sphere. That point is determined
as the intersection with the unit sphere of a line passing
through the origin in the direction of travel of the
incident wave.

The object is to obtain the perturbed complex
scattering amplitude of the combination as a function
of the individual unperturbed scattering amplitudes.
This can be done, as in the previous case, by first
expanding the field scattered by each body in a neigh-
borhood of the other body and then expressing these
scattered fields in terms of plane waves and their
derivatives. The @ priori assumption that the unper-
turbed responses to an incident plane wave are known
permits the calculation of the perturbed responses.

We must establish coordinate systems for the
problem. We first circumscribe spheres 4’ and B’ about
the respective bodies 4 and B. This establishes the
origins of the coordinate systems of A4 and B. The
origins of bodies A and B are established by means of
spheres 4’ and B’ circumscribed about them (Fig. 2).
The spacing d is defined as the line joining the two
centers. We then choose the #, axis, Le., the x axis for
the coordinate system of 4, to be collinear with d and
such that x, increases in the direction of B. The y, and
%, axes can then be chosen to form a right-handed
system and the coordinate system of B is parallel to
that of 4. (Choice of the z axis along d, instead of the
x axis, would be more symmetrical, but has been
avoided for reasons which will be explained later.)

Fic. 2. Plane wave incident upon
two bodies.
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X

Fic. 1. Spherical coordinate system.

2. EXPANSION OF SCATTERED WAVES IN
TERMS OF PLANE WAVES

We proceed to expand the response of each body in a
neighborhood of the other body. This expansion yields
the following field scattered by A4 in a neighborhood of
B where the Cartesian coordinates are in the B system:

1
Uso’=exp[ik(d+xs) ] [;f o® (72:’0°’0’¢°)

1 (ik(y*+3?) T
+E[ ——‘Z-*“f 0“0(5,00,0,%)

T T
- xbfl)“o (570070,¢0) - ZDOanO (_2',00)07¢0)

T
+yDy f* (2,00,0,430) + f10 (5,00,0,¢0) }

+ 0(d“3)]. (3)

Incident
Plane
Wave
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In calculating Eq. (3), the phase of the incident wave o™ T ol ™
at the “center” of 4 has been ignored. The appropriate X fo ‘2':90’0:‘1’0 +2e0 (5:0 Ds fo ”2";90,0,¢0)

phase factor will be restored in the final result. A
similar expansion of the field scattered by B in a

neighborhood’of 4 yields +v¢o(f,0) D, fg""(E,OO,O,dJo)
| T 2
Ua=explik(d )][lf W(Wo 4»)
sp — EXP[ 2 —%Xg) | 70,90 |
' P Ui +v(;—r,0) f1“°(72—r,00,0,¢o) )+6(d”‘“)], 3)
1 {ik(y2+22
+; { l—zfew(z;aaywa¢0) and

2 2 ) 1 /7 T
Usbo = eikd[-—‘z) ( - ) f‘)b‘) (—,8{},‘8’,@50)
} d \2 2

T
+xaf0w (‘:60)“'1‘;50) - ZDofow (“,90,1!',@50) ’
2 2 171 T T
+— "—[Wo&o (—,r) +v¢o¢n(-,1r) ]
d*\ 2k 2 2
T T
- de,fow(‘—,ﬂo,T,(ﬁo) +f1w(_700)7r)¢0) }
2 2 by T T
X fo¥® (E,Oo,mtbo) +vao (E,W)Dof o (5,00,71',050)

ro@)] @
o T
+v¢“(5:7r)D ¢f 0”('2_)00,7'3¢0)
where Dy=43/06 and Dy=3/3¢. We now express these

scattered fields in terms of plane waves by means of - -
the following relations: +v(5,1r) fx*"’( ‘2“,90,‘»’@0))4' @(d—a)]‘ (6)

v(Bo,p0) = exp[ ik (2 sinfy coseo
+ sinfg singo+z cosfy) ], These fields can then be expressed in terms of f; alone
by means of a recursion formula (7) obtained by

o(w/2,0)=¢*=  o(r/2m)=e"%, Sommerfeld*:
o . ) 1 9 0
0 (w/2,0)= —ikze**, voo(mw/2,w) = —ikze~ %=, 2tk (n+1) fag1= {n(n+ 1)4+—— —{ sing—
sind 0 a0
Yoo (7"/250) =iky3ikzx V0 (7r/2,7r) = “’ikyeﬁikx,
1 92
ik + N f ne (7)
1 T r 1k (y?+22) 2 2}
——[Wovo (“30) +1’¢0¢0(“,0) ]-‘= [*-——-“— x}e“"”, sin’f 3¢
2k 2 2 2
In our case, =0 and the recursion reduces to
1 T g tk(y?+2%) )
ﬁ[‘l)ﬂ(ﬂc (E,ﬂ') 48080 (E,ﬁ') ]‘-= {“_—'2———-1-36]8_””. 2k f 1= { COt0D0+D92+CS€20D¢2}fo. (8)
%

Itis here that the proper choice of a coordinate system

Substitution of these relations into (3) and (4) yields is seen to be convenient. We note that the recursion
involves the Beltrami Operator which is singular at §=0.

1 /7 - This singularity occurs in the direction joining 4 to B,

Usl= e'f’“’[—v(—,o) Jo*® (-«,90,0,¢0) if the z axis is chosen collinear with d. Another difficulty
‘ d \2 2 in using such a coordinate system is the occurrence of
terms in the expansions (3) and (4) which are not

171 T T ————ee
+—(—_[vsneo(—,0)+wo¢o(—,0)] 1A, Sommerfeld, Partial Differential Equations in Physics
d:\2ik 2 2 (Academic Press, Inc., New York, 1949), p. 192.
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F16. 3. Normalized coordinate
system.

easily replaceable by derivatives of plane waves. Our
choice of coordinate system avoids these difficulties.
For §=m/2 and ¢=0, Eq. (8) becomes

fl (7/2:00;0;(#0) = (I/Zik){D92+D¢2}f0(7r/270070;¢0)' (9)
For 6=7/2 and ¢=m, Eq. (8) becomes
Ju(m/2,00,mp0) = (1/ 2ik){ D+ Dg?} fo(w/2,80,m,$0). (10)

Substitution of Egs. (9) and (10) into (5) and (6)
results in expressions (11) and (12) for Us? and Us®,
which do not contain f,* and f;*:

[l /= T
Usl= Cde[EU (E,O)fo“o (5;00’0>¢0)
111 T T
+E(5£[{D602+D¢02}v(5,0)]][ 0% (5,90:0@0)
T ™
+ Dogv (E’O) D fo (5,90,0#’0)

m w
+D¢ov(EJO)D¢f 0“0(5’90,0’4’0)

+1 (TO)DLI-D“’ 0(7‘-00
ﬂ 27 { ] d’}fo E) 0y :¢0)}

+e(d~8>], (11)

WL ™
Usd= e”‘d[—v (—,1!‘) fow (—,00,1!’,4)0)
d \2 2

111 T 4
+-—1 __[{D602+D¢02}'0(_,1r) ]fow(—,eo,‘”,%)
a2\ 2ik 2 2

T ™

+ Dogv (—-,7r)Do f Dw(—,ﬁg,w,dao)
2 2
T ™

+Deov (Eﬂr) D¢f0w (5700)7"7‘#0)

1 T T
+§];’v(5ﬂr){De +D2Y o (E""”“"#")]
+O(d‘3)]. (12)

3. CALCULATION OF THE PERTURBED
FAR-FIELD AMPLITUDE

The method employed previously in the two-dimen-
sional case will now yield, up to interaction terms of
degree d72, the field scattered by the two bodies.

The final result must take into account the difference
in phase of the original plane wave with respect to the
two scatterers and also the difference in phase of the
scattered fields of the two bodies at the point of observa-
tion. This can be done by a normalization of the
coordinate systems and subsequent consideration of
the phases in the normalized coordinate system. By a
normalized coordinate system we mean a central
coordinate system whose origin lies midway between
the origins for 4 and B and whose %, ¥, and z axes are
parallel to those emanating from the origins of 4 and B.
If we let @ and B denote the angles of incidence corre-
sponding to colatitude and longitude, respectively,
(Fig. 3), we obtain the following expression for the
field scattered by the two bodies. (The subscript ““0°”
is omitted from the f’s for convenience. Here the
incident wave is taken to have zero phase at the
origin of the normalized system of coordinates.)
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(exp[ikid(sind cosp— sina cosB)]f*(8,a,¢,8)+exp[ —ikid(sinf cosp—sina cosB) ]f*(8,a,¢,6)

™ m
(0’—’¢’W) fw (_}a"’rfﬁ)
2 2
eikd

+exp[ —ikid(sinf cos¢+sina cosB) ]—d— o0 (0,12:,93,0) f® ( ;:,a,O,B)

(o)) oo

eiked
+eXP["1k1d(5ma cos¢-—51na COSﬂ)] fw( ’ )¢) )f (—:_7017).1[ ( %y 7"73)

eikZd

+-exp[tk3d (sinf cosp—sina cosﬁ)]7f

ezkd

1
-+exp[ik3d(sinf cosp+sina cosﬂ)];{ ;’;[Daoz-i-DmZ] f“"(o,g,(b,w) i (g,a,r,ﬂ )
’ 1,
T ™ s T
+ Dﬂof“” (0,—2"¢77r) Dofbo ('2_70‘;7)6) +D¢0fa0 (0,E:¢;7r) D¢f60 (5;‘177";’3)
NIV S
— y P T,
g PP TR

et 1
~+exp[ —ik4d(sinf cos¢+sine COSB)]“d?{ﬁ[DmLI'Dmﬂ f”“( —0,0 ) ( aOB)
i

™ ™ ™ ™
+ D"Ofw (0’57¢70)Dﬂf‘w (E’U’O;B) +D¢Uf°w (0,E,¢,O)D¢f“° (E)ayoxﬂ)

~

(13)

-

4. EXPLANATION OF THE RESULT

The , expression (13) for the scattered field of the
combination of two bodies appears, at first glance, to
be complicated. However, it is not as abstruse as it
seems. A closer examination of this expression along
the lines followed in the two-dimensional case reveals
the significance of the various terms and factors. We
observe first that there are eight terms up to the order
of accuracy @2 calculated here, and we shall refer to
them by number in the order of their appearance above.
The first two terms represent single scattering while the
others represent multiple scattering.

The functions f represent the complex scattering
amplitude of the respective bodies with respect to an
origin in the center of the relevant body, when the
incident wave has zero phase at the center. The odd-
numbered terms represent the fields ultimately scattered

2¢kf ( 70 )[D02+D¢2]f"°( —e 0,5)}4_0@_3)

by body A4, whereas the even-numbered terms represent
fields ultimately scattered by B.

The factors exp[=¢k3d sinf cos¢] represent the
phase differences for the scatterers as a result of the use
of the normalized coordinate system, while the factors
exp[ 7kid sina cosf] take into account the phase
of the incident wave at the center of the respective
scatterers. The f’s containing a § and ¢ dependence are
scattering patterns, while the f’s with specific values for
0 and ¢ are excitation factors accumulated in the
multiple scattering. We note, finally, that the factors of
the form e®*n¢ where =0, 1, 2 refer to the increase tkd
in the phase of a wave in going from one scatterer to
another, and that » signifies the number of bounces.
If one uses the above comments as a guide, all the terms
can be explained in a way similar to the explanation,
given earlier, of the final expression for the scattered
field in the two-dimensional case.
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An action principle technique for the direct computation of expectation values is described and illustrated
in detail by a special physical example, the effect on an oscillator of another physical system. This simple
problem has the advantage of combining immediate physical applicability (e.g., resistive damping or
maser amplification of a single electromagnetic cavity mode) with a significant idealization of the complex
problems encountered in many-particle and relativistic field theory. Successive sections contain discussions
of the oscillator subjected to external forces, the oscillator loosely coupled to the external system, an
improved treatment of this problem and, finally, there is a brief account of a general formulation.

INTRODUCTION

HE title of this paper refers to an elementary
physical example that we shall use to illustrate,
at some length, a solution of the following methodological
problem. The quantum action principle! is a differential
characterization of transformation functions, {a’f;|'ts),
and thus is ideally suited to the practical computation
of transition probabilities (which includes the deter-
mination of stationary states). Many physical questions
do not pertain to individual transition probabilities,
however, but rather to expectation values of a physical
property for a specified initial state, '

(Xt se= Z B'lala' i)'t | X (1) | 0" 0:)(a’"t, | b't),

or, more generally, a mixture of states. Can one devise
an action principle technique that is adapted to the
direct computation of such expectation values, without
requiring knowledge of the individual transformation
functions?

The action principle asserts that (=1),

133
5[f dl:L] b't2>,
ty
&
5[f diL] a’t1>,
t

2
in which we shall take {>>{,. These mutually complex-
conjugate forms correspond to the two viewpoints
whereby states at different times can be compared,
either by progressing forward from the earlier time, or
backward from the later time. The relation between
the pair of transformation functions is such that

o[ I (V'ta|a’ti)(a’ta|b'"82) 1=0,

5(0'!1 l b’t2>= ’i<a,h

and

5(6’12 ; 0'11) = 'i<b’tz

* Supported by the Air Force Office of Scientific Research
(ARDC).

! Some references are: Julian Schwinger, Phys. Rev. 82, 914
(1951); 91, 713 (1953); Phil. Mag. 44, 1171 (1953). The first two
papers also appear in Selected Papers on Quantum Electrodynamics
(Dover Publications, New York, 1958). A recent discussion is
contained in Julian Schwinger, Proc. Natl. Acad. Sci. U. S. 46,
883 (1960). ‘

which expresses the fixed numerical value of
@'t 0" t)=05(0"p").

But now, imagine that the positive and negative senses
of time ‘development are governed by different dy-
namics. Then the transformation function for the closed
circuit will be described by the action principle

8(ta| ta)=8[{ta| 1) X {t:]t2)]

21 i1
=i<t2]a[ f ALy — f dtL._] :2>,
&2 1]

in which abbreviated notation the multiplication sign
symbolizes the composition of transformation functions
by summation over a complete set of states. If, in
particular, the Lagrangian operators L, contain the
dynamical term A.(£) X (¢), we have

EX¢Z E t2>='i<t2

and, therefore,

hdt(m—ax_)xcz)lz;)

¢

]
|tyy=1 {ta]t2)
a-(t1)

={t] X (#)[t2),

where A\p can now be identified, Accordingly, if a
system is suitably perturbed? in a manner that depends
upon the time sense, a knowledge of the transformation
function referring to a closed time path determines the
expectation value of any desired physical quantity for
a specified initial state or state mixture.

—i- (tz
M (t)

OSCILLATOR

To illustrate this remark we first consider an oscillator
subjected to an arbitrary external force, as described by
the Lagrangian operator

L=iy!(dy/dt)—wy'y—y' K (t)—yK*(8),

2 Despite this dynamical language, a change in the Hamiltonian
operator of 2 system can be kinematical in character, arising from
the consideration of another transformation along with the
dynamical one generated by the Hamiltonian. See the last paper
quoted in footnote 1, and Julian Schwinger, Proc. Natl. Acad.
Sci. U. S. 46, 1401 (1960).
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in which the complementary pair of non-Hermitian
operators y, 4y', are constructed from Hermitian

operators g, p by
y=2g+ip)

iy =27} p-i).
The equations of motion implied by the action principle

are
i(dy/dt)—wy=K

—i(dy"/dt) —wy'= K*¥,

and solutions are given by

t
()= ety () — zf dfe—iet—K (1),
2

together with the adjoint equation. Since we now
distinguish between the forces encountered in the
positive time sense, K, (£), K+*(¢), and in the reverse
time direction, K_(¢), K_*(¢), the integral must be
taken along the appropriate path. Thus, when ¢ is
reached first in the time evolution from #;, we have

t
y+(t)—_- "i“<""“)y+(t2)”‘if dt’g‘i”(’—")K+(!'),
£2 X
while on the subsequent return to time ¢,

31
3=y, ()i [ dre 0K, @)

t2
t
+i f df et~ K_(#).
H
Note that
y-(t) =3+ () =0,

¥ () =34 (1) =i f die- (K_—K..) (0.

We shall begin by constructing the transformation
function referring to the lowest energy state of the
unperturbed oscillator, (0/y|0/,)%*. This state can be

characterized by
(02| yty(t2) | O2)=0

or, equivalently, by the eigenvector equations
¥(t2)[02)=0, (0t2]y"(2) =0.

Since the transformation function simply equals
unity if K;=K_ and K, *=K_* we must examine the
effect of independent changes in K, and K_, and of
K.* and K_*, as described by the action principle

153
8K<0t2 ‘ 0t2)Ki= — 'l.<0t2 [f dt (6K+*y+ - 6K~—*y_)
t2

t1 K+
+ f dt(y+*aK+—yJaK_)](0:2>
7]

SCHWINGER

The choice of initial state implies effective boundary
conditions that supplement the equations of motion,

¥+(t2) >0, y_T(t2) —0.

Hence, in effect we have

i
(@) =—1 f dt e (=, (1= 1) K4 (F)
¢
and ’
131
y_({)=—1 f dle=#=— K, (1)
t2

t1
i f oot (1—)K_(¢),
t2

together with the similar adjoint equations obtained by
interchanging the = labels. For convenience, step
functions have been introduced:

\ (t—t’)=[ , t—¢>0
i 0, (=<0’
n_(t—t')={1’ 1—1'<0

0, t—¢>0’

(=) (=) =1, nO)=1-0)=4.
We shall also have occasion to use the odd function
e(t—t)=np(t—1)—n-(t=1).
The solution of the resulting integrable differential

expression for log{0f,|04:) ¥+ is given by

51
(Ot | Oty )E+= exp[ —i f dtd! K*(H)Go(t—1")K (t’)],
t2

in a matrix notation, with

K. ()
K@= (K_(t))
and 1) 0
1Go(t—1t)= —iw(t—t')(m'(_ . , (t—t’))'

The requirement that the transformation function
reduce to unity on identifying K, with K_, K,* with
K_* is satisfied by the null sum of all elements of Gy,
as assured by the property ny+n-=1.

An operator interpretation of Gy is given by the

second variation

—_ 51{*51{(052 ] Otz)K* I K=K*%=0

=q f dtdi'SK*(H)Go(1— 1)K (¢').

Generally, on performing two distinct variations in the
structure of L that refer to parameters upon which
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the dynamical variables at a given time are not explicitly
dependent, we have

—6162<t2|t2>=<t2 f atdt { (81 L ()82L (') 4

—81L ()82 Ly () —8:L_()01L (¢)

+GL_()3sL_(1))_)

)

in which the multiplication order follows the sense of
time development. Accordingly,

(CIOLUC AN —(y*(t’)y(t))o)
—GOR O AGOF NN/’

where the expectation values and operators refer to the
lowest state and the dynamical variables of the un-
perturbed oscillator. The property of Gy that the sum
of rows and columns vanishes is here a consequence of
the algebraic property

@OY @)+ Oy (@)-={y®:5' ()}

The choice of oscillator ground state is no essential
restriction since we can now derive the analogous
results for any initial oscillator state. Consider, for
this purpose, the impulse forces

Ky () =1y"s(t—1a),
K *()=—iy"s(t—1),
the effects of which are described by

¥+ (e H0)~ 1y, () =9",
¥t 0)—y-t () =y"".
Thus, under the influence of these forces, the states
|0t;) and (Of;] become, at the time #,-0, the states
|9"t2) and (y''t,|, which are right and left eigenvectors,
respectively, of the operators y(¢;) and ¥ (). On taking
into account arbitrary additional forces, the transforma-
tion function for the closed time path can be expressed
as

G|y )X+

(21
= exp[yf’y"—y'f’ (f diGo(ts—t)K (t))
ty

o([ro6-13)

—1 f ndtdt’K*(t)Go(t—t’)K (t’)],

iGo(t—1") (

in which

(f tlleo(tz—t)K (t)) =_if udtew—m(K__KJr) Y
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and

( f dtK*(t)Go(t-tz))+

&
= _.if dte—(t—t) (K *— K_*)(2).
t2

The eigenvectors of the non-Hermitian canonical
variables are complete and have an intrinsic physical
interpretation in terms of ¢ and p measurements of
optimum compatibility.? For our immediate purposes,
however, we are more interested in the unperturbed
oscillator energy states. The connection between the two
descriptions can be obtained by considering the
unperturbed oscillator transformation function

O]y "ty = ("] exp[—i(ti—t)wyty]ly").
Now

i(0/06 )y [yt = (y"tr| wyt (W) y (1) | y""t2)
=ayte ety (Vi |y L),

since
y(tl) — e"’-“(‘l"Z)y(tz),
which yields
(9"'t1|y"t) = exp[yte ety ]
= ()" Cak
= —e—inw(t1—t2) .
n=0 (n!)} (nl)t

We infer the nonnegative integer spectrum of y'y, and
the corresponding wave functions

GVlmy= M)/ (), (mly)= )/ (whh

Accordingly, a non-Hermitian canonical variable trans-
formation function can serve as a generator for the
transformation function referring to unperturbed
oscillator energy states,

OY)r O™
<’mf2 | n’tg)K*

(n' !)*.

flt "t Kt d
(y 2‘3’ 2) ,.;;0 (n))}

If we are specifically interested in (mfs|nt,)¥*, which
supplies all expectation values referring to the initial
state #, we must extract the coefficient of (y''y")"/n!
from an exponential of the form

exp[y"y" +y"a+By" +v]

Ok (")
PYRRT 3! exp[y"y" +v].

“x

All the terms that contribute to the required coefficient

3 A discussion of non-Hermitian representations is given in
Lectures on Quantum Mechanics (Les Houches, 1955) junpublished.
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are contained in

w $1, 1\
5 O oy explytsy' 0]
k=0 (B1)2

1 a\
- f 2 explyy" (1xa) 1],
2mi A

where the latter version is obtained from

1 a\ 1

az! - ;!’

2wt
and

{nts| ntg)K*=exp|:—'i f atdt' K*(H)Go(i— 1K (t’)]

| XL,.[( f dtK*(t)Go(t—tg))
+
x( f dtGo(tz—t)K(t)).—],

in which the nth Laguerre polynomial has been intro-
duced on observing that
dA 1 d\"
— —e"(l——)\“x)”=—e’(—) x"e¢~*= L, (x).
A n! \dx

2mi

One obtains a much neater form, however, from which
these results can be recovered, on considering an
initial mixture of oscillator energy states for which
the nth state is assigned the probability

(1—ePo)enbu,
and
gi=¢

can be interpreted as a temperature. Then, since

-4 d)\
(1—eb) T e—nﬁwLn(x)=(1—rw)i f —~

n=0 27

x ]
XeM1—ePo N lefey =g [— ],
C &2
we obtain

(2] to)sE2= exp[—i f tldtdt'K* )Gs(t—tK (t’)],
with ?

iGo (1~ 1) = iGo(i— 1)+ (% — 1)~Go(i—13)s _Go(ta—1),
and in which

1
—

—~
i_Golta—1) =ewtt—0 =1 1,
g

SCHWINGER

Thus,

iGo(t— 1) = e—intt—t") (n+(t—t )+(n)s,

—{(n)s
—1—(n)s, n_(t—t’)+<n>,,)’
where we have written

(m)o= (¢*—1)7,

and since the elements of Gy are also given by un-
perturbed oscillator thermal expectation values

(O (D))o —<y*(t'>y<t>>.,)
—O ENe (W )/

the designation {n); is consistent with its identification

as (y"y)o.

The thermal forms can also be derived directly by
solving the equations of motion, in the manner used to
find (0f,| 0¢,)%X %, On replacing the single diagonal element

(02| 06)" 2= (01| U'| Ot)

by the statistical average

iGs(t—1t)= (

(1—eP9) 3 e~m(nty | nty)E+
0
= (1—¢) trl exp(—Buy'y) U],
we find the following relation,

y- (tz) = eﬁ“’y+ (t2),

instead of the effective initial condition y, (¢2)=0. This
is obtained by combining

exp(—Bwy'y)y exp(Buwy'y)=exp(Bw)y
with the property of the trace
tr[exp(—Buwy'y)yU J=tr[exp(Bw)y exp(—Buwy'y) U]

=tr[exp(—Buwy'y)U exp(Bw)y].
We also have

3= () — 34 (t5)=—3 f dieis— (K ,— K_) (1),

and therefore, effectively,

1 u
f dteio— (K, — K_) (i),
- 1 t2

)= —i
¥+ (t2) =

"Hence, to the previously determined y.(#) is to be

added the term

i1

— iy [ dvemsa- (K=K,
t2
and correspondingly
t1
(tz [ lg),;Ki = <t2 ] tz)oKieXp["‘ (n),,f dtdll
t2

X (K K_¥) (o) (K ,— K._) (t')],

which reproduces the earlier result.
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As an elementary application let us evaluate the
expectation value of the oscillator energy at time #
for a system that was in thermal equilibrium at time #,
and is subsequently disturbed by an arbitrarily time-
varying force. This can be computed as

(t2 wyty(tr) | 2)s™

L R AP N
SK_ (1) 6K *(t1) e

The derivative 8/6K,*(41) supplies the factor

—i( j: :ldtG.;(tl—t')K (t’)) )

the subsequent variation with respect to K_(t) gives

—iG.,(O)+_+( f dtK*(t)Go(t—tl))—

x( f dt'G.,(t1~l’)K(t'))+,

and the required energy expectation value equals
t1 2
wlnyto f die K (1) .
t2

More generally, the expectation values of all functions
of y(#:) and y*(#,) are known from that of

exp{ —i[Ay' (1) +uy ()]},

and this quantity is obtained on supplementing K,
and K. * by the impulsive forces (note that in this use
of the formalism a literal complex-conjugate relationship
is not required)

K. ()=N(t—t),
K *()=ps(t—11).
Then

(t2] exp{—i[Ay" (1) +uy(t) } [ 12)s®

—cxp| MulCltp 42 [ dteomokH()

fu
_..ﬂf die— - K (t)],
t2

which involves the special step-function value
7:(0)=1%.
Alternatively, if we choose
K, ()=No(t—11),
K *(O)=ps(t—t1+0),
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there appears”
(ta] exp[ — Ny (t2) ] exp[ —ipy(t2) ]| t2)s™

t1
=exp[—)\p(n>o+>\ f dtei@—0 K*(f)
- t1
_”f dte“'"‘(““)K(t)].
2

It may be worth remarking, in connection with these
results, that the attention to expectation values does
not deprive us of the ability to compute individual
probabilities. Indeed, if probabilities for specific oscil-
lator energy states are of interest, we have only to
exhibit, as functions of y and 4', the projection operators
for these states, the expectation values of which are the
required probabilities. Now

Pr=|n)n|
is represented by the matrix

OV | Paly")=(""y")"/n!
=LO"y")/n!]exp(—y"y") 3" 5",
and, therefore,

© (—1)*

P,.=nl!(yf>n[ = ol

k= k!

1
=—(""exp(—y"; My,
n!

in which we have introduced a notation to indicate this
ordered multiplication of operators. A convenient
generating function for these projection operators is

::20 aPy=exp[—(1—a)y'; y],
and we observe that
® 3 d
Zo; a"P,= exp[(l --a)g 5;]
Xexp(—iryt) exp(—ipy) [rmumo.
Accordingly,

® a 4d
2 anp(n,K)= eXp[( l—a)é; 5;] eXp[—)\u(n)o

Fagien f et K* (1)

— et f dte"“"K(t)]

gives the probability of finding the oscillator in the
nth energy state after an arbitrary time-varying force

Am=pte=(
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has acted, if it was initially in a thermal mixture of
states.
To evaluate

4 9
X exp| (1)~ — | expL-Duto-01"= 1] scnc
O\ du
we first remark that

° x E - a]x [
—X=exp| (1—a)——\e ———
av* noul o PL Al

1w A L
=(l—c eXP[( "a)ag;]a exp[ ]|

d 9
~ (1~a) exp[a—a)5 6—]<—x<n>~v> expl 11,
m

from which follows

L v(1—a)
av* 1+(n)(1—a)
or
X=X, exp| — |y|—|.
exP[ i 1+(n)(1—a)]
Here

Y i a 9
.,_exp[ “)53;] expL~ M) ] rmpms

=[+m(1-o17,

as one shows with a similar procedure, or by direct
series expansion. Therefore,

o 1—e¢Bo 1— g bw
5 anp(nd,K) = exP[—- Iy (1_a>],
0 1 —aqe e 1—qe*
where
2
vl2=| [k o),

and on referring to the previously used Laguerre
polynomial sum formula, we obtain

p(n,9,K)= (1—ePo)embw exp[— |v|2(1—e )]
X La[—~4|v|?sinh?(Bw/2)].
In addition to describing the physical situation of
initial thermal equilibrium, this result provides a
generating function for the individual transition
probabilities between oscillator energy states,

2 p(nn',K)e(v'—mbe

n'/=0

=exp[— [y[*(1—e) L[ — (1—e*) (e~ 1) |[2].

SCHWINGER

This form, and the implied transition probabilities, have
already been derived in another connection,* and we
shall only state the general result here:

<

!
p(nn K)= z ([y[2)mn<[Lncm>m2 (7] ]
ﬂ>!
XeXP(— 17 I 2))

in which #> and 7. represent the larger and smaller of
the two integers » and #’.

Another kind of probability is also easily identified,
that referring to the continuous spectrum of the
Hermitian operator

g=274(y+y")

[or p=—27%(y—y")] For this purpose, we place
A=u=—2"% and obtain

(t2| "2 { 1)K = exp[ ~ 3" ((m)s+3)+ip"(q(t))¥ ],
with

(q(t1)>K=2—*i[ei~u f 1dte—fMK*(t)

71
R f dte““K(t)].
t2

If we multiply this result by exp(—ip’q’) and integrate
with respect to $’/2m from —« to «, we obtain the
expectation value of 8 ¢(#,) — ¢’} which is the probability
of realizing a value of ¢(4) in a unit interval about ¢’:

#(¢'1,8,K)= (x" tanh}fw)?
Xexp[ — (tanh3fw) (¢’ —(g(t))*)*].

Still another derivation of the formula giving thermal
expectation values merits attention. Now we let the
return path terminate at a different time f'=1t,—T,
and on regarding the resulting transformation function
as a matrix, compute the trace, or rather the trace
ratio

tr(ty’ | ) K2/ tr(ty’ | 8a),

which reduces to unity in the absence of external
forces. The action principle again describes the depend-
ence upon K *(f), K. (f) through the operators y.(¢),
y.1(#) which are related to the forces by the solutions
of the equations of motion, and, in particular,

i
y_ ()= —u»(tz'—tz)y+(¢2)_,if dtet—t" K, (1)
2 u
+i f die - 0K_(1),
174

Next we recognize that the structure of the trace implies
the effective boundary condition

y-(t")=34(t2).
4 Julian Schwinger, Phys. Rev. 91, 728 (1953).
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Let us consider

tr{ty’ | y_ (&) | o) = o ('t | y-(ts') | a'22),

where we require of the @ representation only that it
have no explicit time dependence. Then

(@'t |y (") =2 o {d'|y| "M a"ts|
and

tr(ty’ |y (82)) [ by =T war {0t | 't ){a’ | y| 0”")
=tr(ly’ | v+ (t2) | £a),

which is the stated result.
The effective initial condition now appears as

1 u
94 () = ————i[ f die =K, (1)
ewl—1 t2

t
- f dteiw«—mK.(t)],
ta2’

and the action principle supplies the following evalua-
tion of the trace ratio:

exp[—i f didt' K*($)Go(i— 1)K (t’)]

]
b
where the time variable in K and K. ranges from
i3 to t and from t,’ to ¢y, respectively. To solve the given
physical problem we require that K_(#) vanish in the

interval between t‘2’ and #; so that all time integrations
are extended between #; and #. Then, since

(| =(ta| emiett'=n, p=yly(h),
what has been evaluated equals
tr(ta| e%Tn | 1) K+/tr(ty| €T|4y),

Xexp[— (ewT— 1)—1lfdte"""(K+—K_)(t)

and by adding the remark that this ratio continues to
exist on making the complex substitution

—iT — B3>0,
the desired formula emerges as

tr<t2 | e fon | l2>Ki/t1'<t2 I gfon I tz)
= ex‘p[-—i f dtdt' K* ()G (1— 1)K (t’)].

EXTERNAL SYSTEM

This concludes our preliminary survey of the oscil-
lator and we turn to the specific physical problem of
interest: An oscillator subjected to prescribed external
forces and loosely coupled to an essentially macroscopic
external system. All oscillator interactions are linear
in the oscillator variables, as described by the Lagran-
gian operator

L=iy'(dy/dt)— woy'y—y'K ()~ yK*(1) — 2}g0+ Lex,
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in which L characterizes the external system and
Q(#) is a Hermitian operator of that system.

We begin our treatment with a discussion of the
transformation function {f;|#5)ses¥* that refers initially
to a thermal mixture at temperature ¢ for the external
system, and to an independent thermal mixture at
temperature &, for the oscillator. The latter temperature
can be interpreted literally, or as a convenient para-
metric device for obtaining expectation values referring
to oscillator energy states. To study the effect of the
coupling between the oscillator and the external
system we supply the coupling term with a variable
parameter A, and compute

]
ahi\{h |y K

K
= —'I:<tz l2>

where the distinction between the forward and return
paths arises only from the application of different
external forces K, (¢) on the two segments of the closed
time contour. The characterization of the external
system as essentially macroscopic now enters through
the assumption that this large system is only slightly
affected by the coupling to the oscillator. In a corre-
sponding first approximation, we would replace the
operators Q.(¢) by the effective numerical quantity
{Q(®))s. The phenomena that appear in this order of
accuracy are comparatively trivial, however, and we

shall suppose that
®)=0,

which forces us to proceed to the next approximation.
A second differentiation with respect to A gives

f di2ig, (104 () — 2%9-()0- ()]

1 92
—— —{ta| L) ¥ = <t2
2 9\2

[ aatteomm0@y.
~2-0-(08:0: () + G0 (D90))-]

K3
Y
The introduction of an approximation based upon the

slight disturbance of the macroscopic system converts
this into

192
—— —(tz| 1) ¥+
2 9\?

={u| [ @O Odn-0)
3 ()3t Ay (1~ 1) =yt Oy () Ay (— )

K1
t2>

QEQ®)s )
(Q)QE)-)s/

+ @)yt (1))-4- (t—1)]

W

here A0S
e (((Q( O
QOO
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and we have also discarded all terms containing
y(&)y(’) and y*(&)y'(¥'). The latter approximation
refers to the assumed weakness of the coupling of the
oscillator to the external system, for, during the many
periods that are needed for the effect of the coupling to
accumulate, quantities with the time dependence
e=w+) will become suppressed in comparison with
those varying as e*#0(*=t)_ At this point we ask what
effective term in an action operator that refers to the
closed time path of the oscillator would reproduce this
approximate value of (9/d\)Xt|ty) at A=0. The
complete action that satisfies this requirement, with
A2 set equal to unity, is given by

-+

t1 dy
W= f dl[iy*——woyfy— ¥ K—yK*
t2 dt

i [ AT O3 =)

=31 (D4 (VA 4 (=) =y ()1 (D A+ (1)
+ O OyE)-A- (=11

The application of the principle of stationary action
to this action operator yields equations of motion that
are nonlocal in time, namely,

ay,
gt f WA (=09, (F)

., — 44y (t=)y-()]=K1 ()
Y- “ /) ’ 1
'Ld—t—woy_—z.f2 di'TA_ _(—1)y_(t)

—A_ (= 1)y () ]=K_(),
together with

dy 1 2}
—i;t———woyﬂ—f-z f A’ [y 1 (A (F—0)
2

=y M)A (=) 1=K *(0)
dy t

- ’L—E— woy_T— ’Ioj; dt’[y_" (A_ (=1
=y ()AL (=) J=K*().

The latter set is also obtained by combining the formal
adjoint operation with the interchange of the + and
— labels attached to the operators and K (). Another
significant form is conveyed by the pair of equations

(ii—wo) (y——y)—1 tldt'(A— ——A; )=t
dt i3

X (y-—y4) ()=K_—K,
and

d u
(i_d—t_wo) (y++Y—)+i£2 dt' (A — A4 ) (t—1)

Xt O)=i [ A (Ar+4-) (=)

X@-—y)({)=K,+K_,
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where

(A--—44+)(@—t)=—(Ad—A- (1)
=([Q),Q") Den—(t—1),

(A=A )(t—t)=—(A__—A_)(t—1)
=({[Q®,0) Dans (t—1),

(A4 +4-)=)={®),Q(¢)}o.

The nonlocal character of these equations is not very
marked if, for example, the correlation between Q(¢)
and Q(#) in the macroscopic system disappears when
[¢—¢'| is still small compared with the period of the
oscillator. Then, since the behavior of y(f) over a short
time interval is given approximately by ¢~%¢, the matrix
A(t—1') is effectively replaced by

and

0

f (= 1)eo A (1—t) = A (),

and the equations of motion read
[i(d/d)~w_J(y-—y4s)=K_—K,,
[i(d/dt) — o J(ypty-)—ia(y——ys) =K+ K_.
Here we have defined
o_=wt+i(A- _—A; )(w)=wt3iy,
wp=wp—i(A1— A4 ) (@) =w—1y,
a(w)= (44 -+4-1)(w).

It should be noted that A, _(w) and A_,(w) are real
positive quantities since

L= lim —(( dte-wcz(t))T
x( _::dte—*‘“‘Q(t)»

+(~w).

and

and
A+ __((.0) =A_

One consequence is
a(w)=a(—w)>0.
It also follows from

W_— W= i(A_ _+A++- 2A+ ._) (w)
=i(A- 1= A+ )(w)

(@) =A4- 4 (w)— Ay ()
=—y(—w)

that

is real. Furthermore
w=wi—}(d—A--) (),
where
(A=A ) =) =[RM,Q(¢) Dse(t—1')
= (A=A, ) (=) e(t=1),



BROWNIAN MOTION OF A QUANTUM OSCILLATOR

so that
1 p° do'
—id—A_J)=-P| —),
ki3 w—w

and w emerges as the real quantity

1 ® o'dw’
amar—P [ ).
T 0 w

We have not yet made direct reference to the nature
of the expectation value for the macroscopic system,
which is now taken as the thermal average:

{(X)s=C trePEX
- Cl=trefH,
where H is the energy operator of the external system.

The implication for the structure of the expectation
values is contained in

QO Ns=C trePEQHO()
=Q#)Q+iB))s,
which employs the formal property

HEQ(DEE = Q(t+iB).

On introducing the time Fourier transforms, however,
this becomes the explicit relation

A_j(@)=Ar (),
and we conclude that
e¥ed | (w)=e¥d, (v)
=g(w)/2 coshifw,

which is a positive even function of w. As a consequence,
we have

7 (w)=0(w) tanhifw,
20, Bu>0,
which can also be written as
a(wy=2v{w)[(¢—1)"+3]

The net result of this part of the discussion is to
remove all explicit reference to the external system as
a dynamical entity. We are given effective equations of
motion for y;. and y_ that eontain the prescribed
external forces and three parameters, the angular
frequency (™), v, and @, the latter pair being
related by the temperature of the macroscopic system.
The accompanying boundary conditions are

(3-=y:)(1)=0

and, for the choice of an initial thermal mixture,

y_(t2) =Py, ().
We now find that

=== [ ey~ ) (K-—EK)(0),
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which supplies the initial condition for the second
equation of motion,

(34F3) () = coth (3B)i f digio—-(K_— K.) (9,

and the required solution is given by

i(y++3-) (0
= j: “dt'e"“’*“"”m(t—t')(K++K-)(t’)
—coth (38w) j; tldt'[e““’*““‘"’m(twt’)
Fet-=0n_(t— ) J(K_— K1) ()
+(cothBw— cothiBus) f "t eminstimto

X g (8~ t2) (K_._K+) (g’).

The corresponding solutions for y.1(f) are obtained by
mterchangmg the = labels in the formal adjomt
equation.

The differential dependence of the transformation
function (£, f2)s:05* upon the external forces is described
by these results, and the explicit formula obtained on
integration is

(ta] oo™
=exp{~i f didt’ K*(()Gaoo (t—ta, ' — 1)K (t')],

where [no= {1}y, n=_{n)s]
iGog (t—1a, '—13)

n+l, —n
=g ittty () ( )
—n—1 n

w”)
n—1, ni1

+e m(l—t:}ew—(t’-ts)(nown}(

-+ e—w—{t—z'},,?_(g_ g’) (

)

Another way of presenting this result is
iGoos (t—ta, I'—12)
1 (t—1)+n,

== g—iw(t—t)g~ylt—t] (
—n—1,

: n.(t::’z)*f-n)
)

although the simplest description of G is supplied by

+¢ w(t—#’}e-qf[§(£+£’)*“$3} (na" ﬂ) (
-1
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the differential equation

[ d )G (1) ( 1 0)] ar )
——w —o(l—1¢ ———w_
( a 0 —1 ar
, —n
=_i5(t_t,)7( ):
~n—1, n+l

(where dT indicates differentiation to the left) in
conjunction with the initial value

0+ 3, TR
1Gwes(0,0) = ( )
—no—1, not+3
and the boundary conditions
[i(d/dt) —w  JG=0, t>¢
[i(d/dt)—w_]G=0, i<{.

A more symmetrical version of this differential equation
is given by

() ()
(s

n+3,

—-n-—1,

a—tm( )
=—18(t—1t)y .
nt+3
We note the vanishing sum of all G elements, and that
the role of complex conjugation in exchanging the two
segments of the closed time path is expressed by

(o )

which is to say that

_G(l,7t)+-—*=G(t’t,)+—, —G(tlat)—+*=
=Gl F=Gt )+

It will be observed that only when
(m)ao={n)s

is Gogs(¢t—1s, t'—1,) independent of #;, and a function of
t—1t'. This clearly refers to the initial physical situation
of thermal equilibrium between the oscillator and the
external system at the common temperature #o=4>0,
which equilibrium persists in the absence of external
forces. If the initial circumstances do not constitute
thermal equilibrium, that will be established in the
course of time at the macroscopic temperature #>0.
Thus, all reference to the initial oscillator temperature
disappears from Gses(t—ts, £’ —2;) when, for fixed ¢— ¢/,

TG+ — >0,

The thermal relaxation of the oscillator energy is

G(t$t,)—+

SCHWINGER

derived from

{ta]yty (82) | L2)o00 =

(t2| t2)o0s ™% ’
K _(4) 6K *(4) |Ey=0

s —1Gogs (ti—ta, t1—1t2)4—,
and is expressed by
(" (tl» = <n>"+ ((1’1:)00—- (n).;) e—r{e—1t2)

The previously employed technique of impulsive forces
applied at the time #; gives the more general result

(ta] exp[—i(Ay! (1) +ry(t))]| ta)sos™

=exp[ Nu((n(t))+3) A f dtet D KA (1)

_#f dte—m(tL-t)K(t)],
iz

from which a variety of probability distributions and
expectation values can be obtained.

The latter calculation illustrates a general character-
istic of the matrix G(z,¢), which is implied by the
lack of dependence on the time #. Indeed, such a
terminal time need not appear explicitly in the structure
of the transformation function {f|#)¥= and all time
integrations can range from 4, to +c. Then 4 is
implicit as the time beyond which K, and K_ are
identified, and the structure of G must be such as to
remove any reference to a time greater than #. In the
present situation, the use of an impulsive force at ¢
produces, for example, the term

f dtG(h— tz, t— t2)K(t) ’
i2

in which K and K_ are set equal. Hence it is necessary

that
1
G@tY) (1) =0, 1<t
and similarly that
~
1 1G@EY)=0, 1>,
SN

which says that adding the columns of G(4,) gives
retarded functions of {—#, while the sum of rows
supplies a vector that is an advanced function of
t—¢". In each instance, the two components must havea
zero sum. These statements are immediately verified for
the explicitly calculated Gogo(i—#;, £'—1;) and follow
more generally from the operator construction

_ (((y(t)y*(t'))+>, — @)y ()
=@y (), (@O E))-)

for, as we have already noted in connection with Q
products,

GOP )=y @)y O=yOy' )= Oy (¢))-
= (=)D (9," ()]
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and

O ENe—y Oy () =3 )y () — (@' ().
=—n_(t—="Dy(®)y' )]

Our results show, incidentally, that

{Ly(0,5" (¢) Doop= e+t (1= 1) F-eio= (1~ 1)

=2 giw(t—t ) g—hylt—t']

Another general property can be illustrated by our
calculation, the positiveness of —iG(#,t'); ,

— f dtdi K (D)iG(t— by, ' — 1) _K*(¥)

o ( f dtK(t)y(t))f( f dtK(t)y(t))

We have found that

tz>> 0,

‘iGJo&(t“‘tg, t'"‘" tz)+._
=exp{—w(i—)—v[F{+1)— ]} n)s
i gl =t gyt sy,
and it is clearly necessary that each term obey sep-

arately the positiveness requirement. The first term is
trivial,

f LR (8) exp{—iw(i— ) —v[3 ()~ LT K*(F)

2
>0,

f dte— 7+ (t—t2) K(t)

and the required property of the second term follows
from the formula

g trit=t_ —yth)—ta]

2y p* ,sinm"(t—tz) sinw’ (' —12)
o W+ ()
All the information that has been obtained about
the oscillator is displayed on considering the forces

K 0)=2e()+K (), K *O=p(O+K*),

and making explicit the effects of Ap(f), ms(?) by
equivalent time-ordered operators:

([ orens]).

L] X
x(exp[—z‘ dt<x+yf+u+y>]) z2>
2 + PAD

= exp[—i f dtdt u (DG (= ts, ' —t)N (')

+ f A K* (ein-=n_(t— 1) (M=) (1)

-f dmm—n_)(t)e—m<f—='>n+<t—t')K(z’)].
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This is a formula for the direct computation of expecta-
tion values of general functions of y(£) and y'(#). A less
explicit but simpler result can also be given by means of
expectation values for functions of the operators
[i(d/dt)—wr Jy(D— K (O)=K,(8),
[—i(@d/d)—w_Iy" () —K*(O) =K/ (¢).
Let us recognize at once that
(K}‘(t» =0, (KJ‘T (t»:’ 0,

and therefore that the fluctuations of y(#), y'(£) can be
ascribed to the effect of the forces Ky, K/f, which appear
as the quantum analogs of the random forces in the
classical Langevin approach to the theory of the
Brownian motion. The change in viewpoint is accom-
plished by introducing

Ap(t)=[i(d/dt) —w_Ju.(t)
pe(O)=[—i(d/d)—w Jo. (9),

where we assume, just for simplicity, that the functions
u(2), v(¢) vanish at the time boundaries. Then, partial
time integrations will replace the operators y, y' with
Kq K

To carry this out, however, we need the following
lemma on time-ordered products:

(en] fara <t)+(d/dt)3<t))])+
- (exp{ f did (t)])fxp( f A[A+}@B/di), B]),

which involves the unessential assumption that B(f)
vanishes at the time terminals, and the hypothesis that
[A(), B®)] and [dB(1)/dt, B(f)] are commutative
with all the other operators. The proof is obtained by
replacing B(f) with AB(f) and differentiating with
respect to A,

sl “(032)]),
SR CINFCCTNE

Then, a partial integration yields

o o2 ]
(A1),
(A LD L]
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according to the hypothesis, and the stated result
follows on integrating this differential equation.

The structure of the lemma is given by the rearrange-
ment

—i\ytuy)=—i[u(K*+K)+o(K+K;)]
+ (d/dt) (uy'—vy),

and we immediately find a commutator that is a
multiple of the unit operator,

[A+ (d/dt)B; B]= —éDy*'*'!‘y’ “3’*"‘”3’3
= —{{uu-+rv) — —2iv(i(d/dt) —w)u.

The last form involves discarding a total time derivative
that will not contribute to the final result. To evaluate
[4,B7] we must refer to the meaning of K; and K that
is supplied by the actual equations of motion,

K;(®)=Q)+ (wo—wys)y(?)

KA {H)=00)+ (wo—w_)y'(®),
for then

[A(®),B(®)]=—i[u(wo—w_)y"+v(woi—ws)y, uyt—oy]

= 2ivu (w-wo),

which is also proportional to the unit operator. Ac-
cordingly,

(exp[—i f dz(xy*+uy)D+

= (exp[—z’fdt[u(K*-!*Kﬁ)-l*v(K-f’Kf)]])

+

d
Xexp[i m—wo)fdtm—ifdtv(i;-w)u],
i

and complex conjugation yields the analogous result for
negatively time-ordered products.

With the aid of the differential equation obeyed by
G, we now get

(o],
x(exp[—-‘l: f d:(uK;"+wa)})+ 32>;
=exp[—i L udw(z)xu(t)],

n+3,

—n 1 0
K=7( )+¢@—w0( )
—n—1, n+3% 0 —1

The elements of this matrix are also expressed by
(B OKAEN), —(KSE)KD)
—(K/OKAE), ((KAOKA)H)

where

k(t—1)= (

SCHWINGER

Such expectation values are to be understood as effective
evaluations that serve to describe the properties of the
oscillator under the circumstances that validate the
various approximations that have been used.

It will be observed that when # is sufficiently large
to permit the neglect of all other terms,

m%a(_i “i) Cha=v(n+8)],

and the sense of operator multiplication is no longer
significant. This is the classical limit, for which

<exp[-—i f dt(uK ;11K !)]>o

=exp[— f dt%av(t)u(l)],

where we have placed #y—wu_=u, 1,—v_=v. On
introducing real components of the random force

Ky;=24K+iKs), Kt=2"4K,—iK),

the classical limiting result reads

, <exp[—-i f dt(u1K1+u2Kg)]>d

z-exp[—— f dt}a(uﬁ—l—uzz)].

The fluctuations at different times are independent. If
we consider time-averaged forces,

i
=2

we find by Fourier transformation that

+HAE
drK (),

_ _ At At
(K1~ K1 Yo(Ko— Ky ))s=— exp["‘—(Kllz‘f'sz)]x
a

wa

which is the Gaussian distribution giving the probability
that the force averaged over a time interval A¢ will
have a value within a small neighborhood of the point
K'. In this classical limit the fluctuation constant ¢ is
related to the damping or dissipation constant y and
the macroscopic temperature ¢ by

a=(2v/w)?d,

Our simplified equations can also be applied to
situations in which the external system is not at thermal
equilibrium. To see this possibility let us return to the
real positive functions 4. (w), 44— (w) that describe the
external system and remark that, generally,

A—+(“w)=[¢4~+(w) 120.
Ap-(—w) Ldy-(w)
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These properties can be expressed by writing
Ay (w)/ Ay ()=,

where B(w) is a real even function that can range from
— to 4+, When only one value of v is of interest,
all conceivable situations for the external system can be
described by the single parameter 8, the reciprocal of
which appears as an effective temperature of the
macroscopic system. A new physical domain that
appears in this way is characterized by negative
temperature, 8<0. Since ¢ is an intrinsically positive
constant, it is v that will reverse sign

—v=0e(1—e ¥ls)/(1+¢"1814) >0,

and the effect of the external system on the oscillator
changes from damping to amplification.

We shall discuss the following physical sequence. At
time ?, the oscillator, in a thermal mixture of states at
temperature &, is acted on by external forces which
are present for a time, short in comparison with 1/{v]|.
After a sufficiently extended interval ~ (f—#) such
that the amplification factor or gain is very large,

b= g”'ﬂ (91—‘2)>>1’

measurements are made in the neighborhood of time
¢1. A prediction of all such measurements is contained in
the general expectation value formula. Approximations
that convey the physical situation under consideration
are given by

[t =y s, =K @)
~k f o — ) (et f el K (0),
Jaargr e -H0-1 )@

~Fk f dtK* ()¢t f dt’e®t (e —2) (1),

and
; f A u ()G (—ta, { — N (Y)

b (ot (1= 1)) [ =) (s

X f dt (=) (e

From the appearance of the combinations puy—p_=u,

A+—A_=)\ only, we recognize that noncommutativity of

operator multiplication is no longer significant, and

thus the motion of the oscillator has been amplified to

the classical level. To express the consequences most

simply, we write ’
y(@)=ke ! (y,+yn)

¥ (&)= ke (y:*+y."),
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with
o0
Vo= —if dt'e="K (1),
21
and, on defining

u=rk f dieon(l), v=h f dtety (1),

we obtain the time-independent result

(exp[—i(uy*+vya) ]
=exp[— ({(m)oo+ (1—e~18le) ")y ],

which implies that

<yn> = <yn*) =0
(3] D= (oot (1—e 11} > (mhog+1.

Thus, the oscillator- coordinate y(#) is the amplified
superposition of two harmonic terms, one of definite
amplitude and phase (signal), the other with random
amplitude and phase (noise), governed by a two-
dimensional Gaussian probability distribution.

These considerations with regard to amplification can
be viewed as a primitive model of a maser device,’
with the oscillator corresponding to a single mode of a
resonant electromagnetic cavity, and the external
system to an atomic ensemble wherein, for a selected
pair of levels, the thermal population inequality is
reversed by some means such as physical separation or
electromagnetic pumping.

AN IMPROVED TREATMENT

In this section we seek to remove some of the limita-
tions of the preceding discussion. To aid in dealing
successfully with the nonlocal time behavior of the
oscillator, it is convenient to replace the non-Hermitian
operator description with one employing Hermitian
operators. Accordingly, we begin the development
again, now using the Lagrangian operator

L=p(dg/dt)—5(p*+wig")+F () 490+ Lext,

where Q has altered its meaning by a constant factor.
One could also include an external prescribed force that
is coupled to p. We repeat the previous approximate
construction of the transformation function {f;|#;)ses” =
which proceeds by the introduction of an effective
action operator that retains only the simplest correlation
aspects of the external system, as comprised in

- £{QMR)+s  (RE)I0MD)s
A(—t)= ( , , )
OAE)s  (QMQRE))-)s
5 A similar model has been discussed recently by R. Serber

and C. H. Townes, Symposium on Quantum Electronics (Columbia
University Press, New York, 1960).
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The action operator, with no other approximations, is

f1 dq
W= j:z dt[ﬁgt‘_ 3(P*+wig)+qF (1) 1 — | —]

b [ TGO A (=0)

—2¢-()g+ (") A- +(1— 1)+ (q(Ng(#))-A- _(¢—1)],

and the implied equations of motion, presented as
second-order differential equations after eliminating

p=dqg/dt,
are

d2
(@w&)m

—i [ ATA =0 = Ay (=P (t)1=F, 0

and

d2+ )
(E @ )“‘?

+i [ UA (=g Ao (=)0 1= F-0)

t2

It will be seen that the adjoint operation is equivalent
to the interchange of the labels.
We define

—id,(—1)={[Q®),Q(t) Dons (t—1)
=A++"’A+ _=A__ +—‘A___ —
and

—ida(t—0)=—(Q1,Q#) Don-(t—1)
=A++~A._ +=A+ _"A_ —
together with

a(t=1)={Q),Q()})s
= A+ -+A— +

which enables us to present the integro-differential
equations as

a2 t
(,},—2+woz) (@-—a) (- j,; ' Aa(1—1')(g-— ) (¥)

and =(F—F)®)

dz i1
(E+w02)<q++q_> 0= [ #40-Dr0O

i f dalt—t)(g_—q4) () = (F4+F_) (1),

. SCHWINGER

The accompanying boundary conditions are

(g-—g4)(1)=0, (d/dt)(g-—gq4)(t)=0
and )
1

q—(t2) = g+ (t2) coshBowo+ g+(#2) sinhBewo

wo at
d . d
_dEQ-— (t)=— 90g (22) Smhﬂowo‘l“d_t% (#2) coshBuwo,

or, more conveniently expressed,

1 d
(gs-F¢) (i) =— coth (60— (e-—g:) (&)

we

d
D (g++g-) (t2) = —two coth ($Bewo) (g——g4) (£2),

which replace the non-Hermitian relations
y-(t) =y, (), y-T(ts)=ePony,t(ty).

Note that it is the intrinsic oscillator frequency wp that
appears here since the initial condition refers to a
thermal mixture of unperturbed oscillator states.

The required solution of the equation for ¢.—g+
can be written as

-=200)= [ #G.1-)F—F)E)
where G,(¢—1') is the real Green’s function defined by
d2 0
(E-{-wo’)(;a(t— N— f drA.(t—7)Go(r—t)=58(t—1")
1 —

and
G.(t—1)=0,

Implicit is the time #, as one beyond which F_—F,
equals zero. The initial conditions for the second
equation, which this solution supplies, are

>

7 ® g
(gs-F) (&) =— coth (3Bocce) f pras
t2 0ts

wo

XGy(te—t)(F-—F.) (V')
and

d
Z(Q++q—) (t)
= — 1wy coth (%ﬁowo)f At Go(ta— 1) (F—— F)({).

The Green’s function that is appropriate for the
equation obeyed by ¢,+¢_ is defined by

(£+w02)6r(t—t’) - f_: drA.(t—7)G(r—1t")=8(~1"),

G.(1—1)=0, t<t,



BROWNIAN MOTION OF A QUANTUM OSCILLATOR

and the two real functions are related by
G.(t—1)=G,(t'~?).

The desired solution of the second differential equation
is

(@+a) (0= f 4G, (1= ) B+ E) (1)

—1 f di'w(t—ty, ' — ;) (F-~F ) (1),
where

w(t—1ta, t'—1,)

= f drde’ Gt~ 1)a(r— NG (v — 1)
t

1 a 0
—+— coth(3Bowo) {_Gr(t-tz)*‘*“aa(ig* )
s Oty

wo

+wozG,—(ﬂ"' tg)Ga(tz— t’)]

is a real symmetrical function of its two arguments.
The differential description of the transformation
function that these solutions imply is indicated by

)

dif8(F-—Fy)(g++4q-)

5?*(!2 : x‘q)Fi: 7:<32

T= - ‘%’I:<lz
+8(Fe+F-)(g-—¢¢)]

and the result of integration is

f d1(3F g~ 5F—q.)

)

{t2 f AT

=exp[ i faudt (= P YOG, =) B+ )

-3 f didt' (F_—F)Qw(i—te, ' — i) (F_—F ) (1) }
This can also be displayed in the matrix form

{ta| ta)o0s" £=exp { £ f didi' F()Gogs(t— 1y, 1 — ) F(') } ,
with
Goags (t"— {2, V- t2)

—tee-n(_,_Jreeo(] D)

1 -1
+1iw(t—t,t’——z)( )
: ? ’ -1 1

421

The latter obeys
G NT=G)

- e 2)-oun

and its elements are given by
_; ((g(Og(E))+)09,
—(g(Og(¥))o0s,
We note the identifications
G+(t—t)=#[g(D,a(®) D (1)
Ga(t—1)=—i[g(®),9(*) Dn-(¢—1)
w(t—ta, ' —t2) ={{q(1),q()}).

It is also seen that the sum of the columns of G is
proportional to G,.(f—¢), while the sum of the rows
contains only G,(i—1").

We shall suppose that G,(f—¢’) can have no more than
exponential growth, ~ex¢#), as {~t — . Then the
complex Fourier transform

—{g()g(®))s0s )
OGN

GE)= f = D)6 (1)

exists in the upper half-plane
Im¢>a
and is given explicitly by
GE)=[wi—3—AE) T

Here

A(r):f%d(t—t’)gi{'(l’“i'}A"(i_t!)

—a0

—e (4 — Ay ) (w)

© dw
=1 f d're"f'f
[} — 2w

® @ (A-1—As ) (w)
o—{

or, since (A_,— A, _)(w) is an odd function of w,

o 2T

* dww(A-+"A+—)(°-‘)
A
o-f T

We have already remarked on the generality of the
representation

A+ (w)/ A4 (@)=, B(—w)=B(w),
and thus we shall write
(d—y— A4 ) (w)=0(w) tanh[3wB(w)]
(A—yF4.) (@) =a(w)=a(—~w) >0,
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which gives

G o ® d_wwa(w) tanh[zwﬂ(w)]

w‘!_. §'2

6 T

Since this is an even function of {, it also represents
the Fourier transform of G, in the lower half-plane
Im{<—a.

If the effective temperature is positive and finite
at all frequencies, 8(w)>0, G(¢) can have no complex
poles as a function of the variable {%. A complex pole
at {2=ux-+1y, %0, is a zero of G(¢)~! and requires that

3{ i+ * do wa(w) tanh[ 38 (w)]]= 0,
- (w?—2x)24-9?

which is impossible since the quantity in brackets
exceeds unity. On letting v approach zero, we see that
a pole of G(t) can occur at a point x=w'2>0 only if
a{w)=0, If the external system responds through the
oscillator coupling to any impressed frequency, ¢{w)>0
for all @ and no pole can appear on the positive real
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axis of {2 As to the negative real axis, G(¢)™! is a
monotonically decreasing.function of {*=x that begins
at 4o for = - and will therefore have no zero on
the negative real axis if it is still positive at x=0.
The corresponding condition is

“do  tanh[uB(w)]
—e(w)———.
¢ T w

w02>

Under these circumstances a=0, for G({), gue function
of ¢2, has no singularity other than the branch line on
the positive real axis, and the { singularities are therefore
confined entirely to the real axis. This is indicated by

6= f a2 —

) B 2
= f dwelw) (w{),

and B(w?) is the positi&e quantity

(2r)~'a(w) tanh[}]w]8(w)]

Bl{wh)=

* dew'? tanh ($w'8(w"))
02_._0)2__Pf e,
0

2 w'?

Some integral relations are easily obtained by
comparison of asymptotic forms. Thus

f dtB(u?)=1,
Ei]

f dw?wiB(w?) =we?,
0

and
o @ di?
f dw B(w?) = we'+ f ?a(w) tanh{3w8(w)]
0 o 2m

=ait-+(iQ,00)s,
while setting =0 yields

f i B(w2) [ f”’ c_ii:a(w)tanh wﬁ(w)]"‘

The Green’s functions are recovered on using the
inverse Fourier transformation

*df
Gl—1)= | —ee-06(),
—w 2

where the path of integration is drawn in the half-plane

—w?

a(w'>] o) tanbhaB@)F

of regularity. Accordingly,

. 1—t
G,(t—1t)= f dw’B(wQ)w(———lm(t*t’)

and

Gu(t—1)=~ f wdwﬁB(wf!)—-L:—)n (t—1).

The integral relations mentioned previously can be
expressed in terms of these Green’s functions. Thus,

o L/ —1
[ = [,
Q 9

T w
while, in the limit of small positive 7,

G+ (7)— (1/ws0) sinwer~ (r8/5 (@0 s,

which indicates the initial effect of the coupling to the
external system.

The function B(w?) is bounded, and the Green’s
functions must therefore approach zero as |¢—#| — .
Accordingly, all reference to the initial oscillator condi-
tion and to the time f#, must eventually disappear.
For sufficiently large t—f,, #'—1,, the function w(t—7,
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"—1,) reduces to

w(—1)= fwd'rd'r'G,-(t— 1)a(r—7)Ga(v'— 1)

—00

* dw
=f _ —m(t—t')G(w—f-ie)a(w)G(w—'l:e)le-)O-

—w 4T

G—~1)=i f de(wZ)e"""(‘_")(

with
n(w) E=3 (el”lﬁ(w) — 1)—1’

which describes the oscillator in equilibrium at each
frequency with the external system. When the tempera-
ture is frequency independent, this is thermal equilib-
rium. Note also that at zero temperature #(w)=0, and
G(t—1t)4+ is characterized by the temporal outgoing
wave boundary condition—positive (negative) fre-
quencies for positive (negative) time difference. The
situation is similar for G(¢—1')__ as a function of ¢'—*.
It can no longer be maintained that placing go=p8
removes all reference to the initial time. An interval
must elapse before thermal equilibrium is established
at the common temperature. This can be seen by
evaluating the #; derivative of w(t—1,, ' —1,):

3 w
—w=—G,({— tz)f dr'a(ta— )G, (v'—1)
0ly 2

_f wer,(t—r)a(r—tz)Ga(tr”

1
+— coth(FweBo)

wo

a o0
X I(;—Gr(t—tz) f dr'Ao(ts—7")Ga(r'— 1)
t2 —on

® ad
+ f 44,4~ )G (1=t = Gulta=1) |,
—® 2

for if this is to vanish, the integrals involving G,, say,
must be expressible as linear combinations of G,(¢—1?,)
and its time derivative, which returns us to the approx-
imate treatment of the preceding section, including the
approximate identification of wo with the effective
oscillator frequency. Hence ¢#y=¢ does not represent
the initial condition of thermal equilibrium between
oscillator and external system. While it is perfectly
clear that the latter situation is described by the matrix
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(e (=) +n-(@n-(—1)+n,

~ =N+ (w)— n,
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But
(1/2m)a(w) | G(wti€) | 2=B(w?) coth[}|w|8(w)],

and, therefore,
o 1
w(i—t)= f B (%) coth[3wB(w) T cosw(i—1).
0 w

The corresponding asymptotic form of the matrix
G(t—1,, ¥’ —1,) is given by

—n—(w)—n )
e (@n_(t— )+ (=) +n/

Gs(t—1'), a derivation that employs thermal equilib-
rium as an initial condition would be desirable.

The required derivation is produced by the device of
computing the trace of the transformation function
{t;'|#;)F+, in which the return path terminates at the
different time #,’=1,—T, and the external force F_(z)
is zero in the interval between £, and #,’. The particular
significance of the trace appears on varying the param-
eter A that measures the coupling between oscillator
and external system:

d
— |4 >“=i<‘2'
o

[ [ w00~ [ aa-0-0

Fi
h) .

The operators G, are needed to generate infinitesimal
transformations of the individual states at the corre-
sponding times, if these states are defined by physical
quantities that depend upon A, such as the total energy.
There is no analogous contribution to the trace,
however, for the trace is independent of the representa-
tion, which is understood to be defined similarly at ¢,
and /', and one could use a complete set that does not
refer to A. More generally, we observe that Gi\(Z;")
bears the same relation to the (/| states as does Gy (¢2)
to the states at time /,, and therefore

tr(te’ |G (') | ta) —tr{te’ | Ga (22) | £2)=0.

Accordingly, the construction of an effective action
operator can proceed as before, with appropriately
modified ranges of time integration, and, for the
external system, with

+Gi(t)— Gx(h)]

tr(e’ | Q(DQ () | 22)
tl‘(tzl I t2> )

@eE)=

This trace structure implies that

(QMQE)=(Q&NQ®)

or, since these correlation functions depend only on
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time differences, that

A (t—t)=Ar_(1—1t),
which is also expressed by

A j(w)y=e4T4, (w).

The equations of motion for >, are given by

d2 o0
( ;t;+woﬂ) a0~ [ A=) g 0)
= (F-—F})(})

and

(fj-l-wo“) (¢++¢) () f EZ (=) (g +e-) ()
s T o o

i f da(t—t) (g-—g,)(¢)

&2

= (Fi+F)()—2 f dtdy (=) (t).

These are supplemented by the equation for ¢_(¢) in
the interval from & to #,:

(f‘—g+wn2)g_(z)+i f WA (=g (0)
dﬁ £y’ w
| =i a1,

and the effective boundary condition

g-(t)= g4 (t2).

The equation for ¢_—g,. is solved as before,

(=g ()= f dGo(t—t) (F_—F)(¥),

whereas

(¢++4)®)

- f UG, (=) P ()
—i}) drG.(t—r di'a(z—i) (g — 4
"L ¢ )fts Ya(r—1)(g-— ) (¢)
—2 drG,(i—r AL _(r—Ng
f 0 )L_T‘ (=gt

a3
+G,(t— 52)'67(Q++q-) (t2)

d
———Gr(t—ty) (g++g-) (%),
(§}2)
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which has been written for external forces that are
zero until the moment ¢, has passed.

Perhaps the simplest procedure at this point is to
ask for the dependence of the latter solution upon #,
for fixed 7. We find that

a 0
Z gt ) =— f 0FG, (1= 1) Ao~ 1) (qe42) (1)
iy t 4 .

i f GG, (1= )a(t — 1) (=) (1)

- Z'wadt’Gr (t"‘"‘ t’) [A+ _..(t"" tz)q_ (52)

= A (f—t)gs(t2) ],
on using the relations

fwd'rA,(t—- )G (r—1)= fwd'rG,-(t"- r)4.{r—1),

-0

As— (=g (t) = A (t—12) gy ().

Therefore,
(8/8t2) (g++¢-) (1)=0,

since, with positive time argument,
o—id, =24,
a+id, =24, .

The utility of this result depends upon the approach of
the Green’s functions to zero with increasing magnitude
of the time argument, which is assured, after making the
substitution T — 38, under the circumstances we have
indicated. Then we can let {, — — « and obtain

(@44 (@)= f QUG (1~ 1) (Fy+F)(¢)

—i f = t) (F—F.)(¢)
with i -
w(i—t)= f drdr'G,(t—1)a(r—)Galr'— 1),

-0

as anticipated.
Our results determine the trace ratio

tr(izl i 12)Fi tr(igi GiTHt lz)Fi‘

tr(t k)

treiT®
where H is the Hamiltonian operator of the complete

system, and the substitution 7' — 48 yields the trans-
formation function

(ta| to)oT = exp[%i f did'F()Gs (t»—t’)F(t')]
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with
1 1 1. —1
Golt—1)=3 ra—t')( )+%Ga<t—t'>( )
-1 -1 1 -1

1 -1
%iw(l—t’)( )
-1 1
and

0
w(it—1)= f dwB(w?) coth(}|w|B)e =),
We can also write

w(t—l’)=fwdTC(t—r)(G,,—G,)(r—t’),

where

i o0
C@t—t)=—P f dw coth(3wB)e—iwtt—t)
2r Vo

1 T
=- coth[—(t—’t' )]
B B
What is asserted here about expectation values in the
presence of an external field F(¢) becomes explicit on

riti
e Fi(O)=f+(0+F()

and indicating the effect of f,(f) by equivalent time-
ordered operators,

((en]-i far-0a0])
x (e f dtf+<t>q(t>])+>:

= expl 3 f didt ()G (t—1t) f(t')

+i fad (o= 1 OG-1)F) }
Thus

(O = f HG.(— )P (2)

and the properties of g—(g)s*, which are independent
of F, are given by setting F=0 in the general result.
In particular, we recover the matrix identity

{L@@g@Ns)s,  —(a()g(B))s
Gs(t—1t)=1 )
(q®g(®sy  ((a(Bg(¥))-)o

The relation between w and G.,—G, can then be
displayed as a connection between symmetrical product
and commutator expectation values

* 1
a0, a0)o= [ arCle=n(Latr), a(4)])
o 8
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In addition to the trace ratio, which determines the
thermal average transformation function {fo|f)sF=
with its attendant physical information, it is possible
to compute the trace

tr(ty | £)=tre'TH — tre—#H

which describes the complete energy spectrum and
thereby the thermostatic properties of the oscillator in
equilibrium with the external system. For this purpose
we set F1=0 for 1>, and apply an arbitrary external
force F_(1) in the interval from £, to #. Moreover, the
coupling term between oscillator and external system
in the effective action operator is supplied with the
variable factor A (formerly A?). Then we have

a
—_ tl’(tzll fo)F—
1)

= —% tl‘<t2’

i2
— 3 f ddrA__(t—1t)
“Jw SF_(1)

F—

f s (1) @0g(0))-

)

tr(ty’|g- ()| )7,

where g_(£) obeys the equation of motion
d2 123
(—+w02) g—(O)+iA f d'A__(t—1)g_()y=F_(1)
di o

with the accompanying boundary condition
g-(8) =g+ (t2)=gq-(ta),

which is a statement of periodicity for the interval
T'=1y’—1,. The solution of this equation is

i2
0= [ atGu-npr,
ta’
where the Green’s function obeys

d2 &2
(E—I—woz)G(t—t')-l-i)\f drA_ _(t—7)G(r—1)
i o’
‘ =8(t—1')

and the requirement of periodicity. We can now place
F_=0 in the differential equation for the trace, and
obtain

a &2
— log tr{ty’ | toy=—%i f dtdlA__(t—t)G@—1).
8)\ 22’

The periodic Green’s function is given by the Fourier
series

N - 2win G
6=t~ £ em -——"-0)6tn
with

G(n)= [woz— (2"7”)2-AA (n)]-l=G(—n)
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and

Alm)=— f tzdt exp{?—if(t—z')]m_-(s—z’)

2

=f°°0i? (4-1—44+-) ()
o w o= Q2en/T)? ’

where, it is to be recalled,
Aoy (@)=e"TA; _(w),

so that the integrand has no singularities at w7'=2r|n].
Now we have

9 @
5; log tr=2% 3, A(#)G(n)

10 =
= ——2- — E log[wo ( ) —ad (n)]
which, together with the initial condition

L]
treiTH= (treeifﬂext) Z gitntBueT
]

A=0:

yields = (tr.) (/2 sinjw,T),
1

tretTH = (tr,)(¢/2 sindw,T)

)

Xexp{

We have already introduced the function
® wdw (41— A1) (@)
wi— §-2

and examined some of its properties for real and
positive 4, (w), A+ —(w). This situation is recovered
on making the substitution T'— 48, and thus

Z=tre~P8=7,(1/2 sinh}Buw)

G—l(;—)=w02_.. g-Z_

0 s

{ G~(i2xn/B) }}
g —— e
wet+(2rn/B)?
the existence of which for all 8>0 requires that
G~!(¢) remain positive at every value comprised in

¢2=— (2rn/B)?, which is to say the entire negative {2
axis including the origin. The condition

Xexp{ 3%

o0

G-1(0)>0

is thereby identified as a stability criterion. To evaluate
the summation over # most conveniently we shall give
an alternative construction for the function log(G—1(¢)/
— %), which, as a function of {2, has all its singularities
located on the branch line extending from 0 to « and
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vanishes at infinity in this cut plane. Hence

¢(w)

w2_§-2

log(G-1(¢)/—¢)=- f dr
where the value
e(0)=mr

reproduces the pole of G-1(£)/(—¢?) at {?=0. We also
recognize, on relating the two forms,

ool 2]

. * dw? a{w) tanh{(}wB)
=gp—{— ]| ——
’ 0 27 w2—¢2

that
~1a(w) tanhGwB) cote(w)

= gt —wi—P

* do’ w'a{w’) tanh (3o’ ﬁ)

a T w’2~w2

The positive value of the right-hand side as w—0
shows that ¢(w) approaches the zero frequency limiting
value of = from below, and the assumption that a(w)>0
for all w implies

> ﬂo(w) > O:

where the lower limit is approached as w— .
A comparison of asymptotic forms for G™({) shows
that

"’°2=‘f de o) = fdw( ldtp(w))

while
1de(w)

[+

The introduction of the phase derivative can also be
performed directly in the structure of G—2(¢),

° 1delw)
G-1y=esp [ dof =~ Joge-19)|
0 T dw
and equating the two values for G=1(0) gives
1d
dw ( <p(w)) loga?
® dw tanh %]
=Iog[w02— f —a{w) o ]
]

T w

)w“~wo4+2([zQ,Q]>a

We now have the representation
G-1(i27n/B)
| o)
wot+ (2wn/B)?
f ( 1 d¢(w))

- (2mn/6)?
i+ (2rn/8)?
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and the summation formula derived from the product
form of the hyperbolic sine function,

w?+ (2wn/B8)? -l [ sinhiwB
w02+ (277”/5)2 ]

gives us the desired result .

® 1do(w) o
Z=2Z,exp| — f dw{ —-— log2 sinhjwp |.
¢ r do

The second factor can be ascribed to the oscillator,
with its properties modified by interaction with the
external system. The average energy of the oscillator
at temperature #=8"11is therefore given by

N[t

> log

g
sinhl 3003

E— — dw( ——— ¥ log2 sinhiwB

7 dw,

in which the temperature dependence of the phase
¢(w) is not to be overlooked. In an extreme high-
temperature limit, such that w8<<1 for all significant
frequencies, we have

d
Eza—ﬂ[logﬂ+% log (we?—B(Q%s) ],

and the simple classical result E=¢ appears when
{O%s is proportional to &. The oscillator energy at
zero temperature is given by

e [a(12)

and the oscillator contribution to the specific heat
vanishes.

The following physical situation has consequences
that resemble the simple model of the previous section.
For values of wSwy, a¢(w) tanh(3w8)Kwe?, and a(w)
differs significantly from zero until one attains fre-
quencies that are large in comparison with ws. The
magnitudes that a(w) can assume at frequencies greater
than wy is limited only by the assumed absence of rapid
variations and by the requirement of stability. The
latter is generally assured if

If‘” dw
T ~ow

d=0

—a(w) <wo®

We shall suppose that the stability requirement is
comfortably satisfied, so that the right-hand side of
the equation for cote(w) is an appreciable fraction of
wo? at sufficiently low frequencies. Then tane is very
small at such frequencies, or ¢(w)~m, and this persists
until we reach the immediate neighborhood of the
frequency wi<wp such that

* do wa(w) tanh (3uB) _

moz—wlz—P

g T wz—wlﬁ’
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That the function in question, ReG~'(w+1:0), has a
zero, follows from its positive value at w=0 and its
asymptotic approach to — « with indefinitely increasing
frequency. Under the conditions we have described,
with the major contribution to the mtegral comlng
from high frequencies, the zero point is given approxi-

mately as
©dow  tanh(3wB)
witmzagt— | —aw)—
0o T w

and somewhat more accurately by

©dew  tanh(GwB)
et [ )
o

T w
where o
Bi=14+P| — - ——[a(w) tanh (5wB) .

0 2rwi—owtde

As we shall see, B is less than unity, but only slightly
so under the circumstances assumed.

In the neighborhood of the frequency w1, the equation
that determines ¢(w) can be approximated by

~—%a(wy) tanh(3wi8) cote(w)= B (wi?—w?)
or
cote(w)= (wP—w?)/yer==2(w—w1)/37,

with the definition
vy=3%Ba(w)[tanh (3wiB)/w: &Ko

Hence, as w rises through the frequency wi, ¢ decreases
abruptly from a value close to = to one near zero. The
subsequent variations of the phase are comparatively
gradual, and ¢ eventually approaches zero as w — .
A simple evaluation of the average oscillator energy
can be glven when the frequency range w>w; over
which a(w) is appreciable in magnitude is such that
ﬂw>>1 There will be no sxgmﬁcant temperature varia-
tion in the latter domain and in particular w; should
be essentially temperature independent. Then, since
—(1/7)(d¢/dw) in the neighborhood of w: closely
resembles §(w-—w1), we have approxlmately

__E[log(z sinh}w:8)+8 s (__.__.‘. %w]

D)t » o 1de N
+—) f (_—‘“‘") @,
a1 ) Jsu x do!”

which describes a simple oscillator of frequency wi,
with a displaced origin of energy.

Note that with ¢(w) very small at a frequency
slightly greater than w; and zero at infinite frequency,
we have

1do *
f (____)2@:— dorp()>O0.
>wl >l
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Related integrals are

®

tfww<p(w)>0

>wy

wo?— wy o~
and

2 p* dw
logB™ '~ f —@(w)>0.
nTY e @

The latter result confirms that B<1. A somewhat more
accurate formula for B is

B= exp[ j;ml ( ! d¢(w)

If the major contributions to all these integrals come
from the general vicinity of a frequency &>>wg we
can make the crude estimates

log(wz—wlg)}.

1 p> wo\ 2
— dwgo(w)~——~<<w1, logB—1~ (—_—) «1.
w

Y Se1

Then neither the energy shift nor the deviation of the
factor B from unity are particularly significant effects.

The approximation of ReG(w+i0) as B~'(wi?—w?)
evidently holds from zero frequency up to a frequency
considerably in excess of w;. Throughout this frequency
range we have

—3a(w) tanh (3wB) cote(w)= B (wi?—~w?)
or .
cotp{w)= (w1*—w?)/yw

v(w)=1Ba(w) tanh ($wB)/w.

If in particular fw11, the frequencies under considera-
tion are in the classical domain and + is the frequency
independent constant

with

=1Ba(0)8.

Toregard v as constant for a quantum oscillator requires
a suitable frequency restriction to the vicinity of «wi.
The function B(w?) can be computed from

Bl =E sin?o(w)

7 a(w) tanh(GwB)
‘1B 1

T yw cot?o- 1
and accordingly is given by

Yo
1

B(w?) =
yw 2
= B | — | |

7 {wiiyw—w?
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The further concentration on the immediate vicinity
of wy, |w—wi|~7, gives

B 1 3y
70 P S—
2w m (w—w1)>+(37)?

which clearly identifies B<1 with the contribution to
the integral /" dw?B(w?) that comes from the vicinity of
this resonance of width vy at frequency wi, although the
same result is obtained without the last approximation.
The remainder of the integral, 1—B, arises from fre-
guencies considerably higher than w; according to our
assumptions.

There is a similar decomposition of the expressions
for the Green’s functions. Thus, with 1>,

* dw 1
G, (t—1)~~B —gm it
w 2 —wl—tyw+w,®
re sinw(t—1')
+ dw?B(w?)—————.
Swi? (O]

The second high-frequency term will decrease very
quickly on the time scale set by 1/w;. Accordingly, in
using this Green’s function, say in the evaluation of

{g(D))eF = f a'G.(i—t"YF({")

for an external force that does not vary rapidly in
relation to wi, the contribution of the high-frequency
term is essentially given by

sinw(i—?')
dw?B(w?)——

>>wy? w

0 f A1)

® Bw?)

—F() f il
Swi? w?
But

® B(w? ® dew tanhiw8YT' B
f dw? __[woz— f —a(w) ] ——
Sei? ? o w wy?

~0,

and the response to such an external force is adequately
described by the low-frequency part of the Green’s
function. We can represent this situation by an equi-
valent differential equation

a2
d—;+v~—+ml )<q<t>> ~ BF()

which needs no further qualification when the oscilla-
tions are classical but implies a restriction to a fréquency
interval within which v is constant, for quantum oscilla-
tions. We note the reduction in the effectiveness of the
external force by the factor B. Under the circumstances
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outlined this effect is not important and we shall place
B equal to unity.

One can make a general replacement of the Green’s
functions by their low-frequency parts:

1
G, (t—1") > e =t —sin(w ((— ). (t— 1)
w1

1
Galt—1') — — e 111=01— gin (o (1— 1) m_(t— 1),
w1

if one limits the time localizability of measurements so
that only time averages of ¢(#) are of physical interest.
This is represented in the expectation value formula by
considering only functions f.(f) that do not vary too
quickly. The corresponding replacement for w(t—#') is

1
w(t—1") — coth(3wiB)eH+~+'!— cosw; ({—1'),
w1

and the entire matrix G;(i—¢’) obtained in this way
obeys the differential equation

d? d d? d
—+’Y“—+w12) (—+‘Y—+w12)Go (t—1)
ae  dt arr  dr

1 0 d?
) Coreton
0 -1 dat?
0 -1 d 1 -1
+( )v—ﬁ(t—t’)-l-( )%iaa(t—t'),
1 0 dt —1 1

where ¢=a(wy).

The simplest presentation of results is again to be
found in the Langevin viewpoint, which directs the
emphasis from the coordinate operator ¢(f) to the
fluctuating force defined by

a2 d

(—+7—+w12)q<z>=F(z)+Ff(t>,
di? dt

which is to say

d
Fi()=0(®) +‘Y;tq O+ (w2 —wot)q(?).

This change is introduced by the substitution

( d2 d+ 2)k(
D= ——v— 1),
f=() g £(1)

2

and the necessary partial integrations involve the
previously established lemma on time-ordered operators,
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which here asserts that

(exp[i f dt fq])+= (exp[i f dtk(F+Ff)])+

Xexpl%i f AL (o — o) Bk — (dh/di)] ]

We now find

(ol sfonr]) (sl o)),

=exp[—% f dtdt’k(l)g'(t—t’)k(t')]

with
;(t—t')=%a(

I (L W

0 1I\d
-I-z'v( )~5(t—t’).
-1 0/ dt

The latter matrix can also be identified as

(B (DF 1)) 1)s, —<Ff_<:'>Ff(t>>o)
—(FOF (s, ((FsOF ()]

In the classical limit

<exp[i f dthf]>J=exp[-—ia f dtkﬂ]

La=~d.

ce—)=

and

If a comparison is made with the similar results of the
previous section it can be appreciated that the frequency
range has been extended and the restriction wi™~w,
removed. 4

We return from these extended considerations on
thermal equilibrium and consider one extreme example
of negative temperature for the external system. This
is described by

a(w)=ad(w—wy), w>0
and

—B(w1)=18]>0.
With the definition

(1/7)wie tanh (Gen |8]) = (win)?,
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we have

2 a—1

G(g-):l:wOZ_g-z + (w1i2) ]
wlz__g-z

w12_§-2

[P ortern) T @w— (ot —a) I

As a function of {2, G(¢) now has complex poles if

3 wor—w:?| <wip.

- We shall suppose, for simplicity, that wi=w, and
p<Lwe. Then the poles of

G (f )= 3L (o Fiwou— )~ (0ot —dwou—§2) 1]

are located at {=(wot3ir) and {=-=(w—3u).
Accordingly, G(¢) is regular outside a strip of width
2a=p. The associated Green’s functions are given by

G (t—1)=cosh (Gu(t—1)) (wo) ™ sin(wo(1—1)ns (1—7),
Ga(t—1')= ~cosh (5u(t—1")) (wo) ~*sin(wo (=)~ (t=1),

and the function w(¢—t, ¢ —12), computed for wo(t—1ts),
wo(t'— 1)1, is

w(i—1g, ' —15)
2(wo)~* cos(wo(t—#'))[coth (Jwo| B]) sinh (Gu(t—t))
X sinh (%,U, (t, - lg)) -+coth (%woﬁ o)
X cosh(3u(t—12)) coshGu(—#))].

After the larger time intervals p(i—?), u(t'—#)>>1,
we have

W(t—1, ' —l9)~ (2wo) et =D etin(t'—12) cosuy (1—1')

X [n0+ (]_ —_ e-—wnlﬂl)—l:l’
with
o= (etfr— 1)1,

When ¢ is in the vicinity of a time 4, such that the
amplification factor

kgetntim 3>,
the oscillator is described by the classical coordinate

g()=k[g.(D+gn () ]-
Here

® 1
2:.()= f dt'— sin(wo(t—t'))F (¢) et~
&2 wo

and
g (£)= g1 coswi+gs sinwt,

where ¢: and ¢, are characterized by the expectation
value formula

(e¥atemi) —exp[— (v/wn)} (fi+ 1)),

in which
v=no+ (1—ew0lfl)-1,

Accordingly, the probability of observing ¢; and ¢,
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within the range dgi, dgs is
1 wo wo 1
2(q192)dq1dga=—— exp[—* =(g:*+4¢%) ]dQquz
2r v v 2

wo RES 1
=——€xpl =~ —(a )qndqn"‘d‘ﬁs
v 2 27

where ¢, and ¢ are the amplitude and phase of g.(Z).
Despite rather different assumptions about the external
system, these are the same conclusions as before, apart
from a factor of { in the formula for the gain.

GENERAL THEORY

The whole of the preceding discussion assumes an
external system that is only slightly influenced by the
presence of the oscillator. Now we must attempt to
place this simplification within the framework of a
general formulation. A more thorough treatment is
also a practical necessity in situations such as those
producing amplification of the oscillator motion, for a
sizeable reaction in the external system must eventually
appear, unless a counter mechanism is provided.

It is useful to supplement the previous Lagrangian
operator with the term ¢'(#)Q, in which ¢'(s) is an
arbitrary numerical function of time, and also, to
imagine the coupling term ¢Q supplied with a variable
factor A. Then

__(t2 l ts +g+’

=i | [#16:0.-0-0- )))

Y ( 6 0 0
B ikft‘z 8F+(t) 6Q+'(t) BF._(t) 5q—, (t)

X{ta| ta)Fxa2’,

provided that the states to which the transformation
function refers do not depend upon the coupling
between the systems, or that the trace of the trans-
formation function is being evaluated. A similar
statement would apply to a transformation function
with different terminal times. This differential equation
implies an integrated form, in which the transformation
function for the fully coupled system (A=1) is expressed
in terms of the transformation function for the un-
coupled system (A=0). The latter is the product of
transformation functions for the independent oscillator
and external system. The relation is

-]
oF, 8q.' O6F_dq_'

x<12 l tz)och*Og I tz>exf.q£ l a+'=0,

(tzl tz)F*— exp[—1,
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and we have indicated that ¢.’ is finally set equal to
zero if we are concerned only with measurements on
the oscillator.

Let us consider for the moment just the external
system with the perturbation ¢’Q, the effect of which is

indicated by®
(o] faa0])
x(exp[i f dtq+’QD+

(t] Q4 (B) | 12022’
{ts , by)t’

(L] to)o' = <t2

).

We shall define
Q+ (t !q:i:,) =

18
== log(ta| )7+

, i 8g4'(2)
and similarly (00 e+
Q- (g =

(ta] ta)e

i 89-"(1)

10g<12 l t2>qi’.

When ¢.'(£)=¢(), we have
Q4 (1) =0-(t,¢") = (12| Q) | 2},

which is the expectation value of Q(¢) in the presence of
the perturbation described by ¢'(¢). This is assumed to
be zero for ¢/(f)=0 and depends generally upon the
history of ¢’(¢) between ¢, and the given time.

The operators g4 (¢) are produced within the trans-
formation function by the functional differential
operators (2=1/7) 8/8F.(#), and since the equation of
motion for the uncoupled oscillator is

(di;+w02)q(i)=F(;),

we have

_+ )( ) o (1)
=eXp[_if dt(&%aqi' a:?_a;_' ]

XF £ (t)(t2] ta)ons” *(t2] to)ext®* | ax’=0.

(2] 1)+

On moving F.(f) to the left of the exponential, this

¢ Such positive and negative time-ordered products occur in a
recent paper by K. Symanzik [J. Math. Phys. 1, 249 (1960)],
which appeared after this paper ad been written and its contents
used as a basis for lectures delivered at the Brandeis Summer
School, July, 1960.
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becomes

Fy()(ta] t2)F ++exp[ J(t2]fo)onc™

1 ]
X(:l:—)"*—t b)ext?t [ gy’ =0.
: 6qi,(t)(2] Dext™® | oz

But

1 )
(:b—-) (ta] t0)exs?*" = Q. (£,q2 )t | t2)exe?®’,
1/ 8¢5’ ()

and furthermore,

exp[ ]Q(t’q:!:/xt? I t2)oseFi<t2| t2>extqil ] at'=0
1 6
=Q(i, =i=; ﬁ)(‘z [t2)F=,

which leads us to the following functional differential
equation for the transformation function (f]#)Ft, in
which a knowledge is assumed of the external system’s
reaction to the perturbation ¢4/ (f):

[ o °) ( )aFi(t)—Qi(

Throughout this discussion one must distinguish
between the o signs attached to particular components
and those involved in the listing of complete sets of
variables.

The differential equations for time development are
supplemented by boundary conditions which assert, at
a time #; beyond which Fy(§)=F_(¢), that

-——)-kF
:i:’t BFi i:(t):l

X(tz I lz)Fi: 0

(6F+(t1) 51:_(,1))(‘2“2)“ =0

while, for the example of the transformation function
{t:| t2)900F *, we have the initial conditions

(G )

L coth(zwoﬁo)——(——l-a—) ®) ]<¢21 LYFE=0

wo

[atz(;z‘;;_) 2

— 4wy coth(3woBo) (6_I§*‘:+£‘t) (tg)](tz [4)F£=0,

The previous treatment can now be identified as the
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approximation of the Q.(/gy") by linear functions of
Q:i:’y

0+(tga) =1 f A TA (= 1)g ()~ A (t—1)g" ()]

0-(bgs)=i [ ATA_(~0)a )= A=) )],

wherein the linear equations for the operators ¢4 (¢) and
their meaning in terms of variations of the Fy have
been united in one pair of functional differential
equations. This relation becomes clearer if one writes

(ta| o) +=exp[iW (F ) ]
and, with the definition

g (t,Fy)= (k) W(Fy)

8F . (2)

- (i};)aFi(t)

10g<t2] t2>Fi1

. SCHWINGER

converts the functional differential equations into

62+2)(F)Q( 15)”)0
—tw 6F)— t, get——— ) —FL()=0.
or [ ['EX + + G+ i oF, +

The boundary conditions now appear as

(g+—g) (6, F1)=0
and

1 g
(q++g-) (te,Fy)+— coth (%woﬂo)gt" (g4+—g-) (t,F 1) =0
2

wo
a -
5;*(%‘*‘([—) (t2,F 1) —iwo coth (3woBo) (g —g-) (£,F +) =0.
\ .

When the Q.. are linear functions of ¢, the functional
differential operators disappear’ and we regain the
linear equations for ¢.(#), which in turn imply the
quadratic form of W(F.) that characterizes the
preceding discussion.

"The degeneration of the functional equations into ordinary
differential equations also occurs when the motion of the oscillator
is classical and free of fluctuation.
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The local isomorphism of the R, group to the group R3XR; is utilized to obtain R, Wigner coefficients
for those representations in which the subgroup R; is diagonal. The R, Wigner coefficients so defined are
then used to obtain recursion relations and differential equations for the representation coefficients, when
the group is parametrized appropriately. The R, spherical harmonics, and their properties, are explicitly
obtained as specializations of the general formulas. Physical application to the problem of geometrizing

the Coulomb field is briefly discussed.

1. INTRODUCTION AND SUMMARY

LTHOUGH the four-dimensional rotation group
(R4) is of intrinsic general interest for applications
in physics, this group is of special interest for appli-
cations to (nonrelativistic) physical problems concerned
with the Coulomb field. It has long been known that
the symmetry group of the nonrelativistic Coulomb
central field is that of four-dimensional rotations in
projective momentum space.!? From this point of view,
one may justifiably say that problems involving the
(nonrelativistic) Coulomb field are, using Fock’s phrase,
exercises in the “geometry of the Coulomb field.” It is
an enticing prospect to be able to treat the innumerable
applications of the Coulomb field from such a general
and unifying point of view,! and, in particular, the
possible applications to the treatment of Coulomb
excitation® furnished original motivation behind the
present work.

The present work represents a first step in this
program, and is concerned solely with constructing and
obtaining relations for the representations of the R,
group. This is accomplished by exploiting the well-
known fact that R, is locally isomorphic to R3X Rz and
thus homomorphic to #;X#,. One may immediately
carry over the equally well-known results for the repre-
sentations of #, to obtain representations of Ry. These
are, however, not the representations desired, for in
applications to the Coulomb field one seeks repre-
sentations in which the subgroup R; is diagonal. This
change of basis can be very economically accomplished
by first obtaining the Wigner coefficients for reducing
the Kronecker product of Rs-R; (Sec. 3), and then
using these coefficients to obtain recursion formulas
[Sec. 4(b)] and differential equations [Sec. 4(e)] for
the representation coefficients. Section 4 also discusses
the Wigner-Eckart theorem, matrices of the group
generators, the R, spherical harmonics, and their addi-

* Supported in part by the U. S. Atomic Energy Commission,
the National Aeronautics and Space Administration, and the
Research Corporation.

1V. Fock, Z. Physik 98, 145 (1935).

2V. Bargmann, Z. Physik 99, 576 (1936).

3To be precise, the Coulomb excitation problem involves the
Lorentz group and not R4, since the states lie in the continuum,
but by considering imaginary angles one can obtain suitable
(algebraic) representations.

tion law. A concluding section discusses implications of
these results, and possible further extensions.

2. SUMMARY OF THE PROPERTIES
OF THE R, GROUP

The rotation group in four dimensions has been
treated in many places,® primarily as a particular
instance of the general treatment of the characters of
the n-dimensional rotation group. We shall, for con-
venience to the reader, summarize the features relevant
for the results to be obtained in subsequent sections.

The group R, is the group of all linear substitutions,
with positive determinant, that leave the quadratic form

4

2 %ot

a=1

invariant; the group is generated by the six infini-
tesimal rotation operators D,s= — Dg, defined by

Dap=—i[%a(0/dx5)—~ x5(3/ 0xa) ]. 1)
For these operators, one has the commutation relations

[Daﬁyl)’ﬁ]E -DaﬂD-yb_ DyBDaﬁ

=18 4yDgs+ 188D 0yt 1008D 1+ 1054 Dse. (2)

These relations may be more readily understood by
introducing two operators L=£Dy;+§Ds+2D;. and
A=%D+ D+ 2D3ss. The commutation relations (2)
then read
[L:L;j]=ideinLs,
[Li4 j]=ieinds,
[A i,A ,‘]= 'ie,-jkLk.

©)

The linear combinations

M=1(L+A) and N=i(L-A)

are of particular interest for they obey the commutation

4F. D. Murnaghan, The Theory of Group Representations (The
Johns Hopkins Press, Baltimore, Maryland, 1938); Hermann
Weyl, The Classical Groups (Princeton University Press, Prince-
ton, New Jersey, 1946); D. E. Littlewood, Tke Theory of Group
Characters (Clarendon Press, Oxford. England, 1950).
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rules®
[M,N]=0,
MXM=iM, 4)
NXN=:N.

Since these are simply the commutation relations for
two commuting three-dimensional angular momentum
operators, one concludes that the group generated by
the Dg is isomorphic to the direct product of two three-
dimensional rotation groups.

The commutation relations (2) show that the group
is characterized by two invariants

11=% Z Daﬁ2 and I2=% Z eaﬁ'y&DaﬂD'yB- (5)
af

afyé

These may be equivalently written as
I,;=2(M24N2) =12+ A2
I,=M2—N2=L-A,

For the operators defined by (1), the invariant I, is
always zero. The commutation relations include, how-
ever, more general (not necessarily two-valued) repre-

sentations, By utilizing the fact that Ry=R3XR;, we
may write out the general group element as

g(R)=exp(ia-M) exp(ib- N),

©)

from which the general irreducible characters can be
quickly obtained. Since the characters of R;are given by

X @ (Ry)=sin[}(2j+1)8]/sin(39), M2— j(j+1),
one obtains the general irreducible character of the R,

group as®

X0 (R)= sinf3(27:+1)94] sin[} (2 j2+1),92],
sin(3d4) sin(3d.)

where :
M?— 71(it1), N> 7(ft1),
and
p=jrtj, ¢=j—j, p2¢ )

The irreducible characters of R, are Schur functions
of the two angles—o1=3%(%1+ ), p3=1%(d1—32)—and
are characterized by the two (partition) numbers p and
¢, where p is positive and ¢ may be positive or negative.
[(If p, g are integral we have a true character; if p,q are
half-integral, we have a two-valued (spin) represen-
tation, ]

The characters denoted by X9 and X[»—4 are
designated as comjugate characters. If ¢g=0 (which
implies that L-A=0), the character is self-conjugate;
solutions of the Laplace equation in four dimensions
thus belong to self-conjugate representations.

Since the characters (7) are explicitly real and the
representations unitary, it follows that the classes of R,

5 W. Pauli, CERN-56-31, Geneva, 1956 (unpublished).

S E. P. Wigner, Group Theory (Academic Press, Inc., New York,
1959); see theorems in Chap. 16, Secs. 24.
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are all ambivalent, i.e., every element is equivalent to
its inverse.

Consider now the Kronecker product of two of these
irreducible representations.” Since we have Ry=R;"
XR3;®, one sees that

Ri-Ry= (Rs® - Rs®) X (Rs® - Ry®).

By using the well-known result that

i1tie
X< (Rg)x(z‘”) (Rs) — Z X (Rs),

J=|j1—72|

one sees now that the Kronecker product X!»-dX[#”.¢""]
contains every irreducible representation [P,Q] either
once or not at all. This result, and the result that the
classes of Ry are ambivalent, are the two conditions
required in order that the group Ry be simple reducible,
using the definition given by Wigner.® [One notes,
incidentally, that if reflections are included (so that
the group becomes O,), the irreducible characters are
now X0 and X[»d4-Xlp—d; the group is no longer
simply reducible. Moreover, if p,q are half-integral, then
the representation X!»94X[»—d now requires two
independent spinors, one from each space (M,N)—a
point very familiar now from neutrino theory!]

3. DETERMINATION OF THE R, WIGNER
COEFFICIENTS

The Wigner coefficients were originally defined as
the coefficients which reduce the Kronecker product
of two irreducible representations of the Rs (and u,)
group.? It is reasonable to extend this definition of the
Wigner coefficients fo include the reduction of the
Kronecker product of any simply reducible group.

Let us consider first the ancillary task of para-
metrizing the R, group. There are two independent ways
to do this, corresponding to the two independent ways
to parametrize four dimensions with angular coor-
dinates.

The first way utilizes

x1=7 cosf cosa,- x3=r sinf cosp,

®

Xy=7r cosf cose, x,=r sinf sinB,

which correspond to plane rotations in perpendicular
spaces. The group element of Ry is then conveniently
given in the form

g=exp(ia-M) exp(:b-N). 9)

The parametrization most frequently encountered in
physical applications, however, is the polar para-

7 We distinguish the two different types of direct product by a
center dot - and a multiplication sign X.

8 E. P. Wigner, Am. J. Math, 63, 57 (1941).

® This is to be distinguished from the Clebsch-Gordan series,
which treats the characters of the direct product. The so-called
Clebsch-Gordan coefficients appear not to have been obtained by
these authors.
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metrization :
X1=7 COSX,

X2=7 siny cosf
L (10)
x3=r siny sIng sing,

x4=r siny sinf cose.

Corresponding to this, one seeks to put the group
elements in a form in which the rotations in the
(woxsxs) space are diagonal. The canonical form of the
R, group elements are the two angles that determine
the class; thus

g =exp(ithM,) exp(i8:N,)
=exp{3i[ (LA A4)+ 3 (L. —A.) ]}

=exp(ipd.) exp(ioiL,). (11)
The general element then is obtained as
g:R(ei‘PzAzgimLz)S’ (12)

where R and § are arbitrary rotations that leave, say,
the four-axis unchanged. On using the Euler form for
the R and S, one finds that the general element of R4
may be parametrized as

g(al‘ . .a6)=eialeeiazLyeiasteim;A,eiasLyeiasL,. (13)
[The two redundant angles involved for arbitrary R,
S have been eliminated in Eq. (13).]

This form is particularly advantageous in that only
the matrices for the operator ¢*+4z need be investigated,
the other matrices being well known.

Let us now turn to the problem of the Wigner coef-
ficients. In the form given by Eq. (9), an irreducible
basis is given by the state vectors |jimi; jams). To
obtain the basis corresponding to Eq. (13), one notes
first that besides the two invariants L2+ A? and L-A,
the operators L? and L, are to be diagonal. Clearly then
the required basis is given by

| pglm)y= | j1+Ja, ja— jolm)
= 3 (Jrjamums| jijolm)| jumy; joms).

mime

(14)

[The matrix (jijs--+) in this equation is the usual
(R;) Wigner coefficient, ]

The representation matrices for the R4 group are the
matrices of Eq. (13) evaluated in the basis, Eq. (14).
Thus, one has explicitly

Doy, 1m [P09] (041' . .ao)
— <qu"m” l giailzgiagLygiasLzpiad,

Xei"5l‘”6ia61‘z!?qlm>~ (15)

To determine the Wigner coefficients one has to deter-
mine the matrices that reduce the Kronecker product;
that is, one seeks the matrices U in the equation,

DI 21(g)-Diral(q)=Y UIDP-Q(H)U.  (16)
PQ
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Since, however, we already know the desired result in
the basis corresponding to Eq. (9)—this is the standard
Wigner result—it is clear that Eq. (16) presents an
equally standard problem in the recoupling of angular
momenta,’®!! and the result is found to be

P'qUm'; pgm| Ul p'q'pg; POLM)
=[(P+O+1)(P—O+ 1) 2+-1)(2'+1) ]}
(Vlm'm|VILM )
3(p"+4q)
X |40

3(pt+q) F(P+Q)
%(Pl—q) %(PL—Q)- (17)

[In Eq. (17) the X (---) represents Wigner’s (9—7)
coefficient, or, as it is also called, Fano’s X coefficient;
compare reference 11.]

4. APPLICATIONS OF THE R; WIGNER
COEFFICIENT

The Wigner coefficients furnish the key to most of
the group theoretical results that can be obtained. We
shall in the present section briefly give some of these
results; since we have reversed the usual procedure by
obtaining the Wigner coefficients before we found the

- representation coefficients, one task will be to find

various relations for the representations themselves.

(a) Wigner-Eckart Theorem

Let us suppose that the physical problem possesses
the symmetry of R, so that the state vectors are of the
form |a,pglm), where a represents the various other
quantum numbers. Consider the matrix elements of

the operator O:
M={"; p"q"V'm" | 03'%¥1|a; pgim). (18)

This matrix element is unchanged upon inserting the
unit operator R~'R, where R is a rotation with arbitrary
angles (a1 -@s). On noting first that, by definition,

R|a; pglm)
= E Dl”m”;lm[p'ﬂ(al' . ‘ae) {a, pql”m”%

Urm??

(19)

and, secondly, the definition of an R, tensor operator,

RONIFIRT = 30 Dhrryrrina ¥ 10y, o4, (20)

XI,M',
one finds the result [using Eqgs. (16) and (17)] that
(a//; Puqnlumul @)\”[’”"] Ia;pqlm)
= (pgim; kE'M| U | pgkk’; p"q"'V'm" )
X(a"p"q" |k [lepg).  (21)

W71, C. Biedenharn, J. M. Blatt, and M. E. Rose, Revs. Modern
Phys. 24, 249 (1952).

1t A, R. Edmonds, dngular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957);
G. Racah and U. Fano, Irreducible Tensorial Sets (Academic
Press, Inc., New York, 1959); M. E. Rose, Elementary Theory of
Angular Momentum (John Wiley & Sons, Inc., New York, 1958).




436

[The matrix (---||--+||---) in Eq. (21) is the reduced
matrix element. ]

It is clear that this result is merely a direct tran-
scription of Wigner’s original result. One caution has
to be noted in this proof; it has been implicitly assumed
that the generators of the symmetry group have the form
of rotation operators in the coordinates of the physical
problem. This is necessary in order that the assumed
result, R(fg)= (Rf)g+ f(Rg), holds.

(b) General Addition Theorem for
Gegenbauer Polynomials

The composition law for group elements has the
form of a general addition theorem.? Thus upon taking
matrix elements of the composition law for the general
group element in the form of Eq. (13), one obtains

Dy, 1m0 (R1s)
= Z Dl’m’; Uim' [p.ql (RI)DZ"m”; Im[p'q] (RZ),

1im?’

(22)

with Ry, being the product rotation, R;R,.
On specializing this result to the case where I, m=0,
and taking the complex conjugate, one obtains

Dl’m';OO[p’q]*(R)
= ¥ Dywivrme P (RS Dy e 00?21 (S)

'm!! .

= Z Dzumu;l:m'h"ﬂ(SR_I)DI"m";OO[p'Q]‘(S)'

Pm??

(23)

This result is in the standard form for the transfor-
mation of basis vectors, Eq. (19); thus we can identify

Dy, 00'29*(S) = (const) - | pgim). (24)

In order that /=0 with a nonvanishing result, it is
necessary that p=g¢. By analogy to the spherical har-
monics one then defines the R4 spherical harmonic:

DIm;OO[n_I'O]*(Xaﬁo)- (25)

Ynlv»(xz’ ‘P) = [21“2]%

[The use of n=p+1 stems from Fock.! The R, spherical
harmonics are orthonormal over the interval 0Ly,
<7, 0L ¢<2r with. dQs=sin%x sinddxddde. These
functions are (within a normalization) the Gegenbauer
polynomials (»=1).]

Equation (23) has the form of a general addition
theorem for the ¥ ,m. An even more general addition
theorem is contained in Eq. (22).

{c) Matrix Elements of the Group Generators

Matrix elements for the operators L and A in the
basis |pglm) are readily obtained by the same re-
12E, P. Wigner, “Application of group theory to the special

functions of mathematical physics,” Princeton lecture notes, 1955
(unpublished).

L. C. BIEDENHARN

coupling techniques used earlier. We summarize these
results here.
The general result is

()

=0pp8gq+ ¥ L V)¥Umu | 11 'm”")

<P“q”£”m”

x{ [(p—a)(p+1-g) (p+2—g)

—_ + —
XW(P 92t 2 ql,,)
2 2 2

+(£)[(p+9) (p+1+9) (p+2+9)
ptg p—q, p+q
(55 ) o

[The W(---) function in Eq. (26) is the Racah coef-
ficient.511]

For L, these results are as expected. For A, more
explicit algebraic results may be of value. Suppressing
the indexes p, ¢, one has

W'm’ | A Imy= (Womp [10'm"y- (|| A||1)

with
({iAln
[(p+z+2)(p~l)(l+1—q)(l+1+q>]*’ =it
(+1)(2143)
MECOI @)
e+
_[(ﬁ+l+1)(p+1—l)(l+q)(l—q)]* 1
1(21—1) I

(d) Recursion Relations for the Representation
Coefficients

Once we have the R, Wigner coefficients, it is a
straightforward matter to obtain various recursion re-
lations based upon the Kronecker product law, Egs.
(16) and (17). The general group element has the form
of Eq. (13), and only matrix elements of the operator
e‘«44s gre unknown. Thus, the general form is

(bgl"'m” | R(en- - -as) | pglm)

= Z Dm,,.m,,,(l”)(alaﬂa)

l!/lmlll
X (gl m" | 55| pgl"m"\ Dy V" Ots), (28)

where D...M (- .-} are R; rotation matrices.$
We seek to determine recursion relations for the



WIGNER COEFFICIENTS FOR THE R,

particular matrix element (diagonal in m):
(pgl"m"’ | ex4s] pglm)=Apsmim!> 9 (x).  (29)

In order to begin the recursion process, we must
calculate explicitly the simplest cases:

p=q=%:
Apr B2 (3)
=2 L(0x)/ ! JGE5'm| A.n | h£3m)

= ()8, ddeimx, m=3. (30)
=1, ¢=0:
? e cosy, I=1"
Al”m,lmu’ol (X)=5m0'{ (31)
isiny, [#1",

with (,I')=(0,1).

Consider now the functions appropriate to the R,
spherical harmonics A jm;00'?°% (x). If we apply Eq. (16)
to these, we find

Atm; 0029 () A 1m0 01 (x)
— 3 (pObm; 10Vm’| pO10PQLM)

PQLM

X D ar;on¥ ) (x) (000 ; 1000| p010PQO0).  (32)

Since the R, Wigner coefficients are unitary (and
also explicitly real), we can invert Eq. (16), and hence
Eq. (32), to obtain

> {(pOlm; 10'm’ | pPO10PQLM )

im,U'm’
X Am;00 P (x) 4 17m;001 (%)
= A 13,007 (x) - {($000; 1000| pO10PQ00). (33)

If we now choose the values P=p, Q=1 the right-hand
side of Eq. (33) vanishes identically. On introducing the
algebraic forms for the coefficients given in Eq. (17),
one finds the desired recursion relation from Eq. (33).
This result reads (noting A4 im; 00" = 8,94 16;0017+%7)

sin?y
0=4 Lh2.m; l,,m[p,q] (X) .
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« A 0. 001201
o o A(X) (01 )[(p+1)2—(l+1)2]*
= —1sinx A41,0;00 X (21+3) (21—1)
1 siny-4 19,01 ( )[ (pt1y—r T (34)
2 sy Ai—1,0;00 X (214-1)(21—1). :

(Analogous functions to the 4 -9 were given by Fock!;
the phase and normalization conventions differ from the
above. Just as in the case of the spherical harmonics,
the “natural” phase, i.e., the Condon-Shortley phase,
is obtained directly from the generators of the group.)

[Tt is of interest to note that the recursion relation
given in Eq. (34), where extended to include imaginary
angles x, then contains the recursion formula for the
radial Coulomb function, p+41 — i5. Explicit discussion
of this, and related questions, will be given elsewhere. ]

The recursion relation given by Eq. (34) keeps p
fixed and recurs on the index /. A second type of recur-
sion relation would keep / fized and recur on p. Such a
relation can be easily obtained directly from Eq. (32).
Thus, one finds that

Lp42) (o241 (p+1—1) P 400070 (x)
—2(p+1)}-cosx - 410,007 (x)
+p(p+14+D) (p—D P A 100710 (x)=0. (35)

The final recursion relation which it is necessary to
obtain is a recursion relation for the general represen-
tation coefficient, Am/m!?9(x). The technique for
generating such a relation from the Wigner coefficients
is clear; one uses the unitarity of these coefficients to
invert the Kronecker product law, Eq. (16), preserving
the values of p,q in the representation generated. The
simplest such relation for the general representation
coefficient is—unlike the R3 case—now a five-term recur-
sion relation.

This recursion relation is

I e i

[(214-1)(214-5) 2 (+10+2)

(21+3)

Lo+ = (427 T-Lo+0 = G+ DT+ = ¢ P17 —¢ T

A : ]( ) Sy
X 1 ANrAT 1 v
+Arm L@ @+3)
| _ q(p+1) ]
.[—21 cosx— 2m sinx-———————=
10+1)(+2)

2 sin?x

(21—1) (214-3)
O@+1)—3m 1@ (p+1)?

Ayl (x)-[(l"—l)(l”-l-l-l-l)—

LA+ = m L+ 1= G+ 1L+ 17— -

. {l(l+1)[m2+2—3l(l+1):| +
siny
C2-1)2+1)F}

sin%y

1i+1)
+Al——1.m;l”m[p'ﬂ (X) )

+A 1-2,m; l”m[p'q] (X) M

[B—m2PL(pF 1) - ] [Zi cosy—+2m sin
[P —m (1~ 1)—m2 ]

L+ 1)+ 1)+ mim 1]}]

_ q(p+1) ]
TROYAEN

[QH)@=3)TF -1

Lo+

= FPL(p+1y - (= D¢ 1= T (36)
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[The representation A, 002% (x) is utilized in obtain-
ing this result, and the phase conventions are important.
These coefficients are

1/3(4 cos’x~1) I=0
A0 (x)=<7(8/3)¥ siny cosx I=1
— (8%/3) sin®y 1=2.]

The square roots in Eq. (36) may be eliminated by
redefining the elements 41?4 to include appropriate
factorials.

For completeness, two further properties of the
representation coefficients are recorded here. The first
is the relation between the A::: and the R, spherical
harmonics. This is implicit in the definition, but ex-
plicitly one has

nr R
Ynzm(xt?¢)=[ ]AzO;oo[""l'“]'Yz"‘('?(D)o (37)

r(21+1)

The second relation is the behavior of the represen-
tation coefficients under complex conjugation. Since
the generators, according to the commutation rules,
change sign under complex conjugation, only the
behavior of the basis vectors under time reversal

Lp+1p—r[e— g [P—m*]
2(2—1)(214+1)

d .
—[Amprmled {x)j=1[
dx

H
] A -1, m I“m{p’ d (X) +

L. C. BIEDENHARN

enters. With the usual phase convention this is
T|pgim)= (=)= pgi—m).
Thus, one obtains

Dyprre, 19 (@) *
= (—)t‘:’f+7ﬂ"m,'sz,'mmII; :'_mtpviﬂ (a)'

(38)

As a particular case of this, the R, spherical harmonics
satisfy the rule

Y aim(x0@)*= (= )Y nt,—m(x0)-
(e) Differential Equations for the
Representation Coefficients

The basic differential relation is implicit in the defi-
nition of the representation coefficient 4#4(x), Eq.
(29). Differentiation with respect to x yields the result

(39)

d
;[Azm;z"m“’"” ()]
=i (pgim| 4| pg" " m)Av emprm® (x).  (40)
z’l’

On introducing the. explicit values for the matrix
elements, one obtains

img(p+1)

A s ,,m[p.q]
gy A ()

_H[[(P'F 12— (120012 —m? L0+ 1)~ ¢*]
(H12(20+1)(204-3)

Consider now the special case of the R4 spherical
harmonics. The differential relation Eq. (41) takes then
(p+1)—

a very simple form:
3
—-‘——-————*] Ay-1,0;001701
(21-1)(2141)

+¢(l+ 1)[w]{4 [2.0] (42)
| . (214-1)(21+3) 14+1,0;00°777,

This result, and the three-term recursion relations, Eq.
(34), are of the standard form for the hypergeometric
functions. It is convenient to combine these into the
usual form of “raising” and “lowering” operators:

d
—[A000 rp,m]:il[
dx ,

— (A 0,00171)—1- coty - A g, 00170
JL(+17— 4+ 1)[20+1]
d =1[ 214-3
d—(Az,o;oo[p"’])-i- (1) - cotx - A, 00170
(CO+12—rr204+1]
- 1{ 2-1

]
] Arpr00070;  (43a)

3
} Ap,00070.  (43b)

3
] Alﬂm; v P (X) (41)

These equations imply that the 4(».9 satisfy the dif-
ferential equation

[d2 1) d tp(p+2) l(l+1)]
[ES— t — —
dx? 0 de ? P sin®y

X 40,000 (x)=0.
The general solution then follows, and is found to be
ri+p+2) T
(#+ 1)I‘(P+1~l)]

(44)

A0 (x) = ilEZH‘l]*[

@
X [sinx]"
T

XaFull=p, 2+, 1+ H1—cos0). (49)

A useful form of this, completely analogous to that of
the usual spherical harmonics, is the relation .

T (p+1-0) ]i
P+ (p+24)

d’ l’sin(p"l-l)x
d(cosx)ll.

Ao,0017(x) =i’[2l+1]*[

]. (46)

+[sinx ]
siny
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To obtain the differential equation—and the explicit
solution—for the general representation coefficients is
a much more involved task than for the special case
involved for the (R,) spherical harmonics. Although the
differential relation, Eq. (40), is not appreciably more
difficult, the fact that a five-term recursion relation is
necessary, implies that the desired differential equation
is of the fourth order.

It is fortunate, however, that—unlike the general
case for a three-term derivative relation and a five-term
recursion formula—it is still possible to define raising
and lowering operators for the general representation
coefficient. Upon using Eqgs. (41) and (36), one finds for
the raising operator (after considerable manipulation!)
the result

Opg;10m T A 1120 = = A 11 g o179,

(47a)

with the operator @ defined as

Oyt m %[(p+1+z><p+1 —5) (e 2)(12—-m2)(

&z
. {—+2(§+1)[¢0
dxt

—i\ T
)] . {z cotx-+
2141

Zimg(p+1)
10+1)(+2)

A

GROUP 439

Oprrm =3 (+DL(p+2+D (p—0)(+1—¢)
X (+1+q)+1+m) (I+1—m) ]

2417 2mg(p+1) |t
. [-———] {z cotx+
214-3

1(142)(21+1)
& d
. { ———2 Cotx——+m2+q2+ p(p+2)
ax?

—2z(z+1)+—‘—m—+—) cotx
I+1

N g=Ia+r+n

sin?y

}. (47b)

The lowering operator is found to be

Opgst1tm Ay P = Ay g w9, (48a)

with the operator @ defined as

2mq(p+1) }-l
10+2)(21+1)

L —-+m* g+ p(p+2)—21(0+1)
X

A—=IN+H+1) 2img(p+1)

)+

These results then lead to the fourth-order differential
equation which the general representation coefficient
satisfies, i.e.,

[O26:141.0m O Opgarm P +1]A e P9 (x) =0, (49)

This differential equation, as one might expect, is quite
complicated when written out explicitly, and since the

!
A gz P (x) = (20) 2= |

- cotx } (48b)
sin®x

analysis of such equations is not well developed, it will
not be treated further.

Since the application of the raising operator to the
coefficient A pm;1'm!?'9! must give zero, one obtains a
second-order differential equation for this special case.
Specializing further to the case where ¢g=0 (which is
of interest for the transformation of the R4 spherical
harmonics), one finds the result that

(p+m) (p—m)1(2") (21" +1)! ]*
L@ —m) @ +m)1(2) 1 (p—") (P17 +1)!

[sinx 17" oFu[m—~1", ~m—1",3—1";

1(1—cosx)]. (50)

(The second solution to the differential equation is eliminated by the required behavior at x=0.) It may be noted
that the coefficient A jo;179[?'9 satisfies the same differential equation with ¢ <> m.) For the representation coef-
ficients with'l 7 p, the lowering operator may be used successively.

One may obtain explicit solutions for the case /=g, by exploiting the vanishing of the lowering operator. Thus

for the special case where m=0, one obtains

Ao P (x)=1V"~¢. [

(@+DIENC"+Hp— o+ +1)! ]*
LD — P+
<[siny V"= oFy[ 1" = p, " +p+2, 1" 43 ; 3 (1—cosx) ].

(51)

The results given in Eqs. (50) and (51) are seen to include Eq. (45) as a special case.
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To conclude this section it would be desirable to exhibit the explicit general solution to the fourth-order dif-
ferential equation, Eq. (49). This can be done, and the result is given in Eq. (52). It should be noted, however,
that this result has not been obtained directly from the differential equations, as the previous results were, but
from an exploitation of the isomorphism used earlier in Sec. 3. Consequently, this general result is not so useful

for explicit evaluation as, for example, Eq. (50) or (51).

The general representation coefficient has the explicit form

A4 () = e~ omx-[(24-1) 21" +1) - LU+m)  (—m) 1" +m) 1 (' —m) | ]}

,Z (___)K+)\621:MY

.[(?—l) A= (o= +9)10" =) T [2(p+9—u]3(p+9)+ul!

(p+1+D 1 (p+141")!

kIN(p—I—= k) 1 (p—1""—N)!

xhp

G—9—plGE—9+ul

X
[3(p+9)—u— 1T (p+0) —u—2Ii— 3 (p— ) +u-+ 11— 3 (p—g) Fut) ]!

1
(52)

X .
[ (o= +m—u— 1B (p—)+m—u—N][=3 (p+0)—m-+ut I — 4 (p+)—m-+u-A]

The summations in Eq. (52) are over all integers,
positive and negative, including zero. This result is
necessarily quite complicated, but it reduces properly,
after some manipulation, to the special cases given
earlier.

5. CONCLUDING REMARKS

We have in the preceding sections exploited the
homomorphism of the R4 group to the #,X %, group to
obtain the R, Wigner coefficients. The application of
these coefficients to effect a complete determination of
the representation matrix elements and their properties,
is essentially only a detailed elaboration of the results
of group theory for the special functions of mathe-
matical physics'?; the sole novelty of the present work
is the central role played by the Wigner coefficients.

The real interest in the results obtained lies in their
physical applications. As mentioned in the Introduction,
the original motivation of the present work came from
the possibility of “geometrizing” the Coulomb field. In
his pioneer paper,’® Pauli showed that the nonrela-
tivistic central Coulomb field problem could be charac-
terized by two three-vectors: the angular momentum,
L=#"1rXp, and the Runge-Lenz vector,

@= (2Zeémh)“[LX p—pXx L1+7,

both of which commuted with the Hamiltonian
H=(p*/2m)— (Ze*/r). If one defines a new vector A by
the equation: A= (—2H/Z%m)*@, the commutation
relations for L and A are precisely those of Eq. (3); the
Hamiltonian then takes the form:

AL+ 1= (= Z2m/2PH ) — (pF+-1)2

The difficulty in applying these results to the complete

B'W. Pauli, Z. Physik 36, 336 (1926).

geometrizing of Coulomb field—which otherwise would
be already contained in the Wigner-Eckart theorem of
Sec. 4(a)—lies in the fact that the realization of the
operators L and A in either configuration- or momentum-
space does not satisfy the necessary operator rule
0(fg)= fOg+¢0f which underlies our development.
Bargmann? did achieve a partial result along these
lines, but only at the expense of replacing the operator
H by a c-number operator. His results, like Fock, em-
ployed a projective momentum space, but the radius
of the projective sphere is then a function of H. Only
within a subspace of given energy can the results
obtained in previous sections be directly applied to
evaluate matrix elements of Coulomb field problems.
We shall not detail such results here, but it is inter-
esting to note that this is apparently the group theo-
retical basis for the often observed fact that the
‘“no-energy loss” Coulomb excitation process is of
striking simplicity.! There seems to be no basic reason
why an appropriate canonical transformation cannot be
found for the desired operator realization, but no such
transformation has been found as yet.

Besides the true representations, the results of the
previous sections also include (two-component) spinor
representations. These are of interest in that they
provide a natural extension of the Coulomb field
problem to particles with spin. Now spin % enters
naturally only through relativistic considerations, and,
as is well known, the symmetry of the Coulomb field
problem is destroyed by both the relativistic change of
mass with energy, and the spin precessional effects.
Nonetheless, the extension of the Coulomb field spinor
results allows a form of approximate relativistic Coulomb
field problem of high symmetry. An example of such a

4 L. C. Biedenharn and C. M. Class, Phys. Rev. 98, 691 (1955).
This simplicity extends even to the relativistic problem [compare
Mary E. Young and L. C. Biedenharn. Bull. Am. Phys. Soc. Ser.
II, 5, 112 (1960)].
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result is the well-known Sommerfeld-Maue approximate
solution. The Ry Wigner coefficients are useful here,
since they allow the introduction R, coupled spinors,
analogous to the Pauli central field spinors X,* intro-
duced earlier.’® A detailed discussion of the extensions
mentioned here will be given elsewhere.

ACKNOWLEDGMENTS

A part of the work reported here was carried out
while the author was a Fulbright Fellow at the Uni-
versity of Manchester, and a Guggenheim Fellow at

15 M. E. Rose, L. C. Biedenharn, and G. B. Arfken, Phys. Rev.
85, 5 (1952).

441

the Institute for Theoretical Physics, Copenhagen; the
aid of these organizations is gratefully acknowledged.

Note added in proof. Dr. M. Hamermesh has kindly called my
attention to the papers of A. Z. Dolginov, Soviet Phys.—JETP 3,
589 (1956) and A. Z. Dolginov and I. N. Toptygin, Soviet Phys,~—
JETP 8, 550 (1959), in which these authors have earlier discussed
some of the results obtained above. In particular, these authors
have defined the Wigner coefficient for the R, group [although, to
be precise, the result they gave {their Eq. 27) is not quite as general
as Eq. 17, above]. The applicability of the R; Wigner coefficients
to the group R; has been noted, independently, by several other
authors recently: D. Park, Z. Physik 159, 155 (1960); James D.
Louck, Los Alamos Scientific Laboratory Rept. LA-2451 (Qctober,
1960); and by W. T. Sharp in his comprehensive treatment of
Racah aigebras (thesis, Princeton University, 1960) issued as
A.E.C.L. 1098, Chalk River, Ontario, September, 1960.

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 2, NUMBER 3

MAY-JUNE, 1961

Ellipsoidal Distributions of Charge or Mass*

B. C. CarisonN
Institute for Atomic Research and Department of Physics, Iowa State University, Ames, Iowa

(Received September 19, 1960)

The Coulomb (or gravitational) energy is calculated for a distribution of charge (or mass) in which the
surfaces of constant density are a family of similar concentric ellipsoids. The density can vary in any manner
from one surface to another, and the ellipsoids need not have an axis of symmetry, Two examples are
discussed: the charge distribution of a deformed atomic nucleus having a diffuse surface, and the mass
distribution of a stellar galaxy. The energy is shown to be a product of two factors. One is the energy of the
spherical distribution from which the ellipsoidal distribution can be obtained by a volume-preserving
deformation. The other is an anisotropy factor that has a simple geometrical significance and depends only
on the two eccentricities of the ellipsoids. Its values range from unity to zero and are tabulated numerically.

I. INTRODUCTION

MONG the largest as well as the smallest physical

systems, there occur distributions of matter
that have an ellipsoidal shape and are composed of
elements that exert inverse-square-law forces on one
another. Approximately a quarter of the brightest
galaxies belong to a type known as elliptical galaxies,
in which the density of stars decreases smoothly in all
directions from the center. They generally contain
very little interstellar gas or dust, show almost no
internal structure, and have nearly ellipsoidal shapes
with axial symmetry and various degrees of flattening.!
Another quarter consists of lenticular galaxies, many
of which are similar to the ellipticals but show a little
differentiation between internal regions. The remaining
lenticulars and most of the spiral galaxies show too
much internal structure to be approximated, except

in a crude fashion, by a mass distribution with ellipsoidal.

surfaces of constant density.
Near the other extreme of size, the atomic nuclei of
the rare-earth and actinide regions, as well as some

* Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission.

1 G. de Vaucouleurs, Handbuch der Physik (Springer-Verlag,
Berlin, Germany, 1959), Vol. LIII, p. 305.

of the light nuclei, have equilibrium deformations of
ellipsoidal shape. The departures from spherical sym-
metry are never as large as they sometimes are in
the elliptical galaxies, but both prolate and oblate
deformations occur and there is substantial evidence
for shapes without axial symmetry (triaxial ellipsoids}).?
Unlike the gravitational attractions between the stars
of a galaxy, the repulsive Coulomb forces between the
protons in a nucleus do not control the dynamics of
the system. Nevertheless, the Coulomb energy is an
important term in the semiempirical mass formula;
it supplies the energy released in fission and plays an
important part in the energetics of any disintegration
into charged fragments.

To a first approximation, the charge distribution of a
deformed nucleus can be treated as a homogeneous
ellipsoid (a uniform charge density bounded by a sharp
ellipsoidal surface). Since the potential in the interior of
a homogeneous ellipsoid is a quadratic function of the
Cartesian position coordinates? it is easy to obtain

2 The asymmetric rotor theory of Davydov and Filippov is
compared with experimental data by D. M. Van Patter, Nuclear
Phys. 14, 42 (1959).

¥0. D. Kellogg, Foundations of Potential Theory (Springer-
Verlag, Berlin, Germany, 1929), p. 194.
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result is the well-known Sommerfeld-Maue approximate
solution. The Ry Wigner coefficients are useful here,
since they allow the introduction R, coupled spinors,
analogous to the Pauli central field spinors X,* intro-
duced earlier.’® A detailed discussion of the extensions
mentioned here will be given elsewhere.
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The Coulomb (or gravitational) energy is calculated for a distribution of charge (or mass) in which the
surfaces of constant density are a family of similar concentric ellipsoids. The density can vary in any manner
from one surface to another, and the ellipsoids need not have an axis of symmetry, Two examples are
discussed: the charge distribution of a deformed atomic nucleus having a diffuse surface, and the mass
distribution of a stellar galaxy. The energy is shown to be a product of two factors. One is the energy of the
spherical distribution from which the ellipsoidal distribution can be obtained by a volume-preserving
deformation. The other is an anisotropy factor that has a simple geometrical significance and depends only
on the two eccentricities of the ellipsoids. Its values range from unity to zero and are tabulated numerically.

I. INTRODUCTION

MONG the largest as well as the smallest physical

systems, there occur distributions of matter
that have an ellipsoidal shape and are composed of
elements that exert inverse-square-law forces on one
another. Approximately a quarter of the brightest
galaxies belong to a type known as elliptical galaxies,
in which the density of stars decreases smoothly in all
directions from the center. They generally contain
very little interstellar gas or dust, show almost no
internal structure, and have nearly ellipsoidal shapes
with axial symmetry and various degrees of flattening.!
Another quarter consists of lenticular galaxies, many
of which are similar to the ellipticals but show a little
differentiation between internal regions. The remaining
lenticulars and most of the spiral galaxies show too
much internal structure to be approximated, except

in a crude fashion, by a mass distribution with ellipsoidal.

surfaces of constant density.
Near the other extreme of size, the atomic nuclei of
the rare-earth and actinide regions, as well as some

* Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission.

1 G. de Vaucouleurs, Handbuch der Physik (Springer-Verlag,
Berlin, Germany, 1959), Vol. LIII, p. 305.

of the light nuclei, have equilibrium deformations of
ellipsoidal shape. The departures from spherical sym-
metry are never as large as they sometimes are in
the elliptical galaxies, but both prolate and oblate
deformations occur and there is substantial evidence
for shapes without axial symmetry (triaxial ellipsoids}).?
Unlike the gravitational attractions between the stars
of a galaxy, the repulsive Coulomb forces between the
protons in a nucleus do not control the dynamics of
the system. Nevertheless, the Coulomb energy is an
important term in the semiempirical mass formula;
it supplies the energy released in fission and plays an
important part in the energetics of any disintegration
into charged fragments.

To a first approximation, the charge distribution of a
deformed nucleus can be treated as a homogeneous
ellipsoid (a uniform charge density bounded by a sharp
ellipsoidal surface). Since the potential in the interior of
a homogeneous ellipsoid is a quadratic function of the
Cartesian position coordinates? it is easy to obtain

2 The asymmetric rotor theory of Davydov and Filippov is
compared with experimental data by D. M. Van Patter, Nuclear
Phys. 14, 42 (1959).

¥0. D. Kellogg, Foundations of Potential Theory (Springer-
Verlag, Berlin, Germany, 1929), p. 194.
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the Coulomb energy by integrating the product of
the potential and the constant charge density over the
interior of the ellipsoid. (Alternatively, for small
deformations, one can expand the equation of the
surface in spherical harmonics of degree two and
calculate the Coulomb energy to lowest order in the
expansion coefficients.) For a better approximation,
one would like to take into account the diffuseness of
the nuclear surface; furthermore, the mass distribution
in a galaxy tapers off gradually and does not resemble
a homogeneous ellipsoid.

In order to discuss the energy of such distributions,
which are not known in exact detail but are neither
spherical nor homogeneous, we shall assume that the
surfaces of constant density are a family of similar
concentric ellipsoids.* This assumption seems reasonable
hoth for nuclei and for elliptical galaxies, although some
reservations about its accuracy will be mentioned in
Sec. V. (It also applies moderately well to the mass
distribution of the earth, a slightly flattened ellipsoid
with a sharp surface but nonuniform density, although
the high-density contours near the earth’s center are
thought to be more nearly spherical than the low-
density contours near the surface.?)

The Coulomb or gravitational energy of a distribution
that satisfies this assumption, but is otherwise arbitrary,
will be shown in Sec. II to reduce exactly to a product
of two factors. One of these, to be called the anisotropy
factor, depends only on the eccentricities of the ellip~
soids and has a simple geometrical significance; the
other depends only on the variation of density from
one surface to another and has a simple physical
significance.

Since the energy is not changed by permuting the
three axes, it seems appropriate to replace the eccen-
tricities by two parameters that are elementary sym-
metric functions of the axis lengths. In Sec. IV the
anisotropy factor, which is essentially an incomplete
elliptic integral of the first kind, is tabulated as a
function of two such symmetric parameters. As in the
unified model of the nucleus, one parameter is a measure
of the departure from spherical symmetry while the
other specifies the shape of the deformation (prolate,
oblate, or triaxial). The anisotropy factor is insensitive
to the shape parameter for small and even for mod-
erately large deformations.

Section V contains a discussion of two examples, the
Coulomb energy of a Gd'® nucleus and the gravitational
energy of the Large Magellanic Cloud. An Appendix
gives the recursion relations that were used to calculate
the incomplete elliptic integrals of the first kind.

4 A series expansion of the potential of such a distribution will
be given in a later paper,

5K. Jung, Handbuck der Physik (Springer-Verlag, Berlin,
Germany, 1956), Vol. XLVII, p. 604.
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II. FACTORIZATION OF THE ENERGY

In a family of similar concentric ellipsoids, each
member corresponds to a constant value of

Rr=(a*/a®)+ (/) + (#/cY), ¢RY

where «, y, and 2z are Cartesian coordinates and the
corresponding semiaxes have lengths eR, bR, and cR.
It is convenient to regard R as a length and to let q, b,
and ¢ be dimensionless numbers that are normalized
according to

(2.2)

abc=1

and are common to all ellipsoids in the family. (Similar
ellipsoids, unlike confocal ellipsoids, are simple enlarge-
ments of one another.) When q, 8, and ¢ are separately
equal to unity, the ellipsoids degenerate to spheres and
R reduces to the radius 7.

We shall want to compare a spherically symmetric
distribution having density p(r) with a corresponding
ellipsoidal distribution having the same total charge
but density p(R), the functional dependence of p on
its argument being exactly the same in the two cases.
The ellipsoidal distribution can be obtained from the
spherical one by a volume-preserving deformation that
moves each charge element from its original location P
to a final location P’:

(2.3)

Each surface of constant density is deformed from a
sphere into an ellipsoid of the same volume, the initial
value of r and the final value of R being numerically
equal.

The Coulomb energy of the ellipsoidal distribution is
given (in rationalized mks units) by

P=(x,9,2) — P'= (ax,by,c2).

11 P(R)p(R))
U(d,b,c‘) ——5 ?4—1:;0 ffdrdr '—'{‘;:-;;—I’— (2.4)

In the gravitational case (4wep)™ is replaced by the
negative of the gravitational constant G. The energy
U(1,1,1) of the corresponding spherical distribution
differs from (2.4) only by the occurrence of 7 and #’ in
place of R and R'.

The result to be proved in this section is that the
right-hand side of Eq. (2.4) can be factored:

U(a,b,e)=(rAU(1,1,1). (2.5)

The second factor is the energy of the spherical distribu-
tion, which depends only on the functional form of p.
The first factor is an anisotropy factor that depends
only on a, b, and ¢ and has a simple geometrical meaning.
The deformation (2.3) changes the unit sphere into a
“unit ellipsoid” that has the same volume. The radius
vector from its center to a point on its surface is
1= (x1,91,%1), where the components are dimensionless
numbers satisfying :

(@ 0+ (9/B)+ (22/c2)=1. (2.6)
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In spherical polar coordinates, the radius vector has
components (r1,6,¢) and its square is found from
Eq. (2.6) to be

1 sin’d cos?¢ sin®@sine cos?f\ !
ri= —( + + ) . @27

S@6,0) | |

(1«2 b2 62
The anisotropy factor is the mean square radius of
the unit ellipsoid, where the mean is an average over

angles:
smededgo
f f 2.8)
S0,¢)

(rit)= fn—=

We shall give two proofs of Eq. (2.5). The first is
formal and self-contained; the second is more physical
but makes use of a theorem from potential theory. The
formal proof begins by inserting a Fourier integral for
the reciprocal distance in Eq. (2.4)

61k (r—r1’)

1
, U(abc)—-é—-——fdrdr'dkp(R)

p(R'). (2.9)

If we define R=(x/a,y/b,2/c) and K= (akx,bky,ckz),
then the Fourier transform of p(R) can be written in
the form

f dre’e5p(R) = f dReER)(R)
=4_I%rf"° p(R)Rsin(KR)dR

=4re, f 7(R) cos(KR)dR, (2.10)
where ’

A(R)= f " (R)RR.. (2.11)

The last step in Eq. (2.10) follows from an integration

by parts in which the boundary terms vanish.® Equation
(2.9) now becomes

Ula,b,c) 2 f dk—lz((fw 7(R) cos(KR)dR)z. (2.12)

If we choose spherical polar coordinates (K,,¢) in
K space, then k2= K2*5(6,¢), where S(4,¢) is defined by
Eq. (2.7). The integral over angles is just the one in
Eq. (2.8):

Ula,b,c) =4efr1® f de ( f ) 7(R) cos (K.R)dR)2

={ri®)2mes f [+(R)]%R, (2.13)

6 Both the total charge and the energy of the spherical distribu-
tion are assumed to exist. Then 77(r) necessarily tends to zero at
the origin and also at large distances.
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where Parseval’s formula has been used in the last
step. For the particular case of spherical symmetry,
Eq. (2.13) reduces to

U(1,1,1)=2re f m[r(r):]Zdr, (2.14)

an expression for the energy of a spherical distribution
that has been derived more directly elsewhere.” Since
the variable of integration is immaterial, Eq. (2.14)
can be substituted back into Eq. (2.13) to obtain
Eq. (2.5).

The second proof starts from Newton’s theorem:
if a thin shell between two similar concentric ellipsoids
is filled with a uniform charge density, the potential is
constant in the region enclosed by the shell.® In order
to evaluate the constant, it suffices to find the potential
at the center. An element of solid angle dQ about the
center cuts from the shell a small cylinder with slant
height dr and projected base area 724, where r is
determined as a function of angle by 72=R2/5(f,¢) in
accordance with Egs. (2.1) and (2.7). The charge
contained in this cylinder contributes to the potential
at the center an amount

pridrdQ/4mwer=pRARAQ/4meeS (6, 0).

Integration over angles shows that the total potential
at the center is
{r®)pRdR/e.

Hence, when a spherical shell is subjected to the
deformation (2.3), the constant potential inside the
shell is changed only by a factor (r:2).

We now assemble the complete ellipsoidal distribution
by bringing up shells of successively smaller size. When
all shells larger than the one labeled by R have been
assembled, the potential in the empty space enclosed
by them has the constant value

wp RR'AR'={r2r(R).

[We note in passing that the potential at the center of
an ellipsoidal distribution is (r?7(0).] The work
required to bring up the next shell of thickness dR
and volume 47 R2%dR is

) (R}4WR2dR<r Dr(R).

The total work required to assemble the distribution is
U(a,b,6)=(rd)dn f A(Rp(R)RAR.  (2.15)
0

As in the case of Eq. (2.13), the coefficient of {(r?) on
the right-hand side must be the energy of a spherical

7B. C. Carlson, Iowa State J. Sci. 35, 319 (1961).
8 W. D. MacMillan, Tke Theory of the Potential (Dover Publica-
tions, New York, 1958), p. 10.
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distribution; this particular expression for it is again
obtained more directly in footnote 7.

III. ANISOTROPY FACTOR AS A FUNCTION
OF THE ECCENTRICITIES

The mean square radius of the unit ellipsoid, given
by Eq. (2.8), can be written as

2 pt2 p72 £5in%0 cos?e  sin?f sinZ¢  cos?f\ !
(r?)=- f f + +
Yy 0 a? b2 c?

3.1)

Xsinddod o,

where the integration now extends over one octant of
the ellipsoid. By taking tane as a new variable, the
integration over ¢ can be carried out®:

/2 sm20 I A sm20 cos?
=[G ()

X sinfdé.

(3.2)

Because of its geometrical meaning, the integral is a

symmetric function of a, b, and c; therefore, no general-

ity is lost by assuming
a<b<c. (3.3)

We shall retain this assumption throughout Sec. III
and define the eccentricities

=(1—a?/)},
= (1—a/2) ,
€=(1-0/?)i<e
The inverse relations are found from Eq. (2.2) to be

a=(1—e)B3(1—¢2)1s,

b= (1—e&)~V6(1—¢€2)1f3 (3.3)
¢=(1— &) V6(1— ¢2)=1/s,
Substitution of cosf==x in Eq. (3.2) gives
1 1
(r®)=- f (1—e2x?) (1 — "2x%)~¥dx. (3.6)
(2]

The further substitution of ex=siny puts the integral in
Legendre’s standard form for the incomplete elliptic
integral of the first kind:

YY) 1
e |~ T F(ok), (37
ol e OV D
where
sinp=r¢,
k=¢/e. 38

9 Most of the changes of variable used in Sec. III and the first
paragraph of Sec. IV can be found in texts that discuss the
potential of a homogeneous ellipsoid. Several well-known relations
will be essentially reproduced here because of minor differences
arising from our normalization of the semiaxes.
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When the unit ellipsoid has an axis of symmetry, the
elliptic integral reduces to an elementary integral. In
the prolate case inverse hyperbolic functions occur:

e=b<c,
€=¢, k=1,
1 14
{r?)=— In——=—tank e
2ce 1—e¢ ce
(3.9
(1—e)t
= tan/ le
€
64 58
=1——e— S— S—- -
45 2835 2835

In the oblate case, inverse circular functions occur:

alb=c,

¢=0=Fk,
) (1—e)ls

(r%)=—sin"le= sin~! (3.10)
C€ €
1 62 55
=1——¢— e— eS—-..

45 2835 2835

The leading coefficients of the power series in the
prolate and oblate cases are nearly equal. However, this
does not imply that (r.2) is nearly independent of ¢ for
a general ellipsoid with small eccentricities; on the
contrary, the right-hand side of Eq. (3.6) is formally
symmetric in € and ¢’. Change of variable to #=x? gives
the integral form of Appell’s first hypergeometric
function of two variables!®:

1 1
{r®)=— f uH(1—eu) (1 — 2u)"idu
26 0

— 1.11.,3,
——F1(7> 225 2>
[4

62,6,2)

_- i f (7)Mn('2')m(7)n62me,2n’ (3'11)
¢ mo 320 (§)mpamin!

where

(@) m=a(a+1)(@+2)- - - (a+m—1).

By making a binomial expansion of 1/¢ from Eq. (3.5)
and multiplying the two series, we obtain the Jeading

10 W. N. Bailey, Generalized Hypergeometric Series (Cambridge
University Press, New York, 1935), pp. 73, 77
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terms

1
ri2)=1——(e'— e2e'2+¢%)
s 45

(@+€?) (3lei—46€2 2431+ - --.  (3.12)

2835

IV. ANISOTROPY FACTOR AS A FUNCTION
OF SYMMETRIC PARAMETERS

If it should be inconvenient to make the assumption
(3.3), the definitions of the eccentricities in terms of
@, b, and ¢ could be made to depend on the relative
sizes of these numbers. For instance (1— %)} would be
defined as the ratio of the smallest to the largest. The
smallest of three numbers can be regarded as a sym-
metric function of the three numbers; similarly, the
eccentricities could then be regarded as symmetric
functions of @, &, and ¢, but not at the same time as
elementary functions in the usual sense of the word.
To find a more satisfactory choice of symmetric param-
eters, we consider an integral representation of (r:?
which makes its symmetry conspicuous: substitution of
A=¢? tan? in Eq. (3.2) gives

(r®)=% f [A+a) A+ A+ TN, (4.1)
0

We shall now introduce symmetric parameters ¢ and
n in the course of a proof that (r,?) cannot exceed
unity. The expression in square brackets can be
rewritten as

A+ A+ 0+ = A+1pP+Ha+m,  (4.2)
where -
E=a? %23,
=0 2b2+c2-3.

The quantities £+3 and 543 are both of the form
u+v+w, where #, v, and w are positive and their
product is #vw= 1 by Eq. (2.2). Under these conditions,
we have

(4.3)

(utvtw)= X

2
u2+—) >9,
%,7,Ww u
where the equality holds only when #, », and w are all
unity. This result implies

£20, 720,
and

<3 f T kD) -ta=1, (4.4)

where the equalities hold only when the unit ellipsoid
is a sphere. Any nonspherical ellipsoidal distribution
has a lower self-energy than the corresponding spherical
distribution. We note in passing that Egs. (4.4) and
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(3.7) give an upper bound for the incomplete elliptic

integral of the first kind:
™
( <p<-—). (4.5)
2

The inequality is a close one for small ¢.

If £ and n are sufficiently small, we can substitute
Eq. (4.2) in Eq. (4.1) and make a binomial expansion
of the integrand:

sing

(cos@)V3(1— k2 sin2 )1/t

Fle,k)<

(rty=3 f [ 1)+ E2-FmA T4
9

- é(-l)’(ZS—l)HKa(Em), (4.6)
where . ( )
* (ENtm)ene
Ks M) = d 4.7
= | 6D

is a homogeneous polynomial in ¢ and 5 of degree s.
The polynomial can be written!! as a terminating hyper-
geometric series:

2s—1)1! ¢
Kulem) =y 2F( s 54152548 1——) 4.8)
(s .

(4s—-1) ! £
=— 2F1(—s,s+1;%—~25;—). 4.9
(6s+1)!! "

Equation (4.8) is useful in relation to the special case
£=1 because the ,F; function then reduces to unity.
From Egs. (4.3) and (2.2) one finds that the condition
£=7 means that one semiaxis has unit length while
the other two are reciprocals. In the notation of Sec. III
we have

b=1, c¢=1/a,
&=¢2(2—¢"?),

1/k2=1+4cose,
n=f=a?+c*—2=cosp+seco—2.

(4.10)

The mean square radius in this case turns out to be a
generalized hypergeometric series:

- [(2s—1)1T
()= % (~)———
= ds+1)!!
1 1.3 1-3-5
-_—1____£= 2 e 3
3.5 5.7-9° 7-9-11-13

11 35 ¢
=3F2(—, —y 1;—,—; —"‘). (4.11)
22 44 4

11 A, Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Company,
New York, 1953), Vol. I, pp. 60, 108.
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In the general case, Eq. (4.9) is more convenient for
determining (r:2) as a power series in £ and 7:

1 1
2y ——(4F+3n) +———
) =1= s+ o

X (48£2+60&n+35n%)+- - -.

Although the parameters £ and  have the advantage
of being symmetric polynomials in the three semiaxis
lengths, they have some drawbacks, too. One of the
foremost is their awkwardness for describing ellipsoids
of revolution. We shall turn now to a pair of parameters
used by Hill and Wheeler? in the collective model of
the nucleus:

27 b 27
a=exp[a cos('y—— ], —=exp[\/305in y—— ],
3 ¢ 3

2T c 2
b=exp[0' cos('y+—) ], =exp[\/3¢r sin(-y—l——- ],
3 a 3

(4.13)

(4.12)

a
c=exp(o cosy), ; =exp (V3o siny).

There is a one-to-one correspondence between the
ordered triples of positive numbers (g,b,c) satisfying
abc=1 and the points of the oy plane (0<a, 0<y <2r).
The inverse relations are

o?=2[ (Ina)?+ (Ind)2+ (Inc)?],
cosy=(1/¢) Inc,
siny= (1/¥3¢) In(a/b),
cos3y=(4/¢%) (Ina) (Ind) (Inc).

Permutations of g, b, and ¢ carry the point (s,y) into
the six points (o, &%), (o, 120°%%), and (o, 240°+7)
without changing the values of the symmetric functions
o and cos3y. The prolate ellipsoids of revolution are
described by cos3y=1, the oblate ones by cos3y=—1,
and the unit ellipsoids with one semiaxis of unit length
by cos3y=0.

A nearly spherical ellipsoid has a radius 7(6,¢) that
can be written, to first order in ¢, as a constant plus
spherical harmonics of degree two. More briefly, a
small ellipsoidal deformation is a quadrupole deforma-
tion. To establish the connection in this case between
the notation of Egs. (4.13) for ellipsoids and the now
widespread notation introduced by Bohr® to describe
nuclear quadrupole deformations, it suffices to compare
the expressions for the semiaxis lengths; one finds that

2D, L. Hill and J. A, Wheeler, Phys. Rev. 89, 1102 (1953),
Fig. 13. The condition a <b<c¢ of Sec. III corresponds to —60° <y
<0°. It would be natural in the present context to reverse the
sign of v in Egs. (4.13) and thereby to interchange the definitions
of a and b, but we shall retain the choice of sign that has become
conventional in the unified model of the nucleus.

13 A. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
26, No. 14 (1952).

(4.14)
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Bohr’s shape parameter v is the same as the one used
here and that his measure 8 of deformation magnitude
is a constant times o. To second order in o, however,
these statements are no longer true. By Eq. (2.7), the
quadrupole part of

n@A=[SCTH= T an¥ir0,0) (4.15)

is given to second order in ¢ by
aon= (4‘”)*(1_%‘72);
az= (4n/5)¥ e cosy— (1/14)a? cos2v],
@y 1=an=0,
G22=a23=(2m/5)} ¢ siny+ (1/14)e? sin2v].

To this order, the two notations are related by

(4.16)

dar 1
B2= (a20)2+2(as0)*= ?02(1—50 cos?ry) ,

\/70'22 o sin3'y
tan‘ygoh, = = tanﬁy ( 1 +.. - ) ,
@ 7 sin2y

(4.17)

€0583YBonr = COS3Y— EU (sin3y)2.

The deformations found in nuclei are sufficiently small
that the second term of

0=0.6318(1+0.0458 cos3y+- - )

may ordinarily be neglected.

It is clear from Egs. (4.13) that any function of g,
b, and ¢ is a periodic function of v with period 2x and,
if square integrable, can be represented by a Fourier
series in v ; furthermore, if the function is symmetric in
a, b, and ¢, Eqs. (4.14) show that its Fourier series can
contain only terms of the type cos3ny. Since increasing
v by = is formally equivalent to changing the sign of o,
the coefficient of cos3x#y must be an even function of ¢
if # is even and an odd function if # is odd. Finally, we
note that a, b, and ¢ are expressible in terms of o cosy
and osiny; any function of these variables that is
proportional to an integral power m of ¢ cannot contain
Fourier harmonics of order higher than m. Therefore,
if the coefficient of cos3ny can be represented by a power
series in o, the lowest power that occurs will be o3,
These arguments show that a symmetric function such
as (r12), &, or n can be developed in a series of the form

aotBoor? o0 +d00 8+ - - -
+ (azo3+B305+ - - -) cos3y
+ (cs0®+- - - ) cosby
A (4.19)

Herein lies a principal advantage of the present choice
of parameters; (r,?) is independent of v to order o2, is
a linear function of cos3y to order ¢% and is a quadratic
function of cos3y to order o8,

(4.18)
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In order to find the coefficients in the series (4.19) for w
(r12), we first consider the series £=310(20)—3+6 3. I3n(20) cosdnmy (4.22)
n=l
o0
t+3=arb+c?= T g.(0) cosdny, = 302403 cos3y+3o4+(0%/4) cosdy

n=0 '

(4.20) + (0%/120) (10+cos6y)++ - -, (4.23)

1 T
gn(0)=(2—6no)5— f (a2+-b2+c?) cos3nydy.
T

-

The three terms in parentheses make equal contribu-
tions to the integral, for they differ from one another
only by a phase angle in v of 27/3, which is a period of
cos3ny. Replacing the terms in parentheses by 3¢?, we
obtain'

T

Since 7 differs from £ only by a phase angle of = in v,
we have

n=3T0(20) =346 3 (—1)"T5n(20) cosdny. (4.24)
n=1

Finally we substitute these expansions in Eq. (4.12)
and obtain, to terms of order ¥,

(0)=(2—8 )i €2 57 cos3myd 1 1 1 13
&n i ey (r®)=1——-¢2———0* cos3y+—o*+——0" cos3y
5 105 28 4620
h = (20403754 (20), 203 379
here o gintim ot oS(cosdy)it- -, (4.25)
LaQ20)= ¥ ——— (4.21) 28600 900 900
m=0 m | (3n—+m)!

is a Bessel function of imaginary argument. The Fourier
expansion of { is, therefore,

Inspection of the coefficients shows that {r2) should be
very nearly a linear function of cos3y for ¢ 1. This
expectation is borne out by Table I, which was com-

Taz1E I. The mean square radius {r:?) of the ellipsoid (x1/e)?*+ (y1/8)*+ (21/¢)?=1, where abc=1. The mean is an average over angles,

defined by Eq. (2.8). The parameters o and cos3y, defined by Eqs. (4.14), are symmetric functions of &, , and ¢; the magnitude of the
deformation from sphericity is measured by ¢ and the shape of the deformation by cos3y. The value of cos3y is 1 for a prolate ellipsoid
of revolution, —1 for an oblate one, and 0 for a triaxial ellipsoid with one semiaxis of unit length. The ratio of axis lengths for an
ellipsoid of revolution is exp(30/2). The relation of (r?) to the incomplete elliptic integral of the first kind is given by Eq. (3.7).
Th? r:)ttio of the Coulomb energy of an ellipsoidal charge distribution to the energy of the corresponding spherical distribution is equal
to (r?). .

\cos3y
AN —-10 —0.8 —0.6 —0.4 —0.2 0.0 0.2 0.4 0.6 0.8 1.0

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000  1.00000 1.00000 1.00000
0.05 099950 0.99950 0.99950  0.99950  0.99950  0.99950  0.99950  0.99950  0.99950  0.99950  0.99950
0.10 099801 0.99801  0.99801  0.99801 0.99801  0.99800  0.99800  0.99800  0.99800 0.99800  0.99799
0.15 099555 .0.99554  0.99554  0.99553  0.99552  0.99552  0.99551  0.99551  0.99550  0.99549  0.99549
0.20 0.99213  0.99212 0.99210 0.99209  0.99207 0.99206  0.99204  0.99203  0.99201 0.99200 0.99198
0.25 098778 0.98775 098773 098770  0.98767 098764 0.98761  0.98758 098755 098752  0.98749
0.30 098254 0.98248 098243 0.98238 0.98233 098228 0.98223  0.98218  0.98213 098208  0.98203
035 097642 097634 097626 097618 097610 097602 097594  0.97587 097579 097571  0.97563
040 096947 0.96935 096924 0.96912 096900 096889 0.96877 0.96865 096854 0.96842  0.96831
045 096173  0.96156 096140 096124 0.96107 0.96091 096074 0.96058 0.96042 0.96026  0.96009
0.50 0.95324 095302 0.95279 095257 0.95235 095213 0.95191 095169 095146 0.95124  0.95103
0.6 093419  0.93382 093344 0.93307 0.93269 093232  0.93195 0.93158 093121 093085  0.93048
0.7 091270 091212 091154 091096 091039  0.90982  0.90925 0.90869 0.90813  0.90757  0.90702
0.8 0.88914  0.88830  0.88747 0.88664 0.88581  0.88500  0.88419  0.88338  0.88258  0.88179  0.88100
09 0.86391  0.86275 0.86160  0.86047 0.85934 0.85823 0.85713  0.85603  0.85495  0.85389  0.85283
1.0 0.83736  0.83583  0.83431  0.83282 0.83135  0.82989  0.82845 0.82703  0.82564 0.82425  0.82289
1.2 0.78169  0.77924  0.77684  0.77448  0.77218 0.76991  0.76770  0.76553  0.76341  0.76132  0.75929
14 0.72452  0.72096  0.71749  0.71412  0.71084 0.70766  0.70457  0.70156  0.69864  0.69581  0.69307
1.6 0.66774  0.66290  0.65824  0.65374  0.64941  0.64524  0.64123  0.63737  0.63366  0.63009  0.62666
1.8 0.61268  0.60646  0.60052  0.59485  0.58945  0.58429  0.57937  0.57469  0.57023  0.56599  0.56197
2.0 0.56024  0.55258  0.54535  0.53852  0.53206  0.52597  0.52021  0.51478  0.50967 0.50486  0.50035
2.5 0.44343  0.43228 042205 0.41265 0.40399 0.39601 0.38866 0.38189  0.37567 0.36998  0.36481
3.0 0.34804 0.33400 0.32155 0.31043 030045 0.29147 0.28338 0.27609  0.26955  0.26371  0.25857
3.5 0.27206  0.25605  0.24236  0.23050  0.22014 0.21102  0.20297 0.19585 0.18960  0.18414  0.17947
4.0 0.21225 0.19521 0.18122 0.16949  0.15949  0.15089  0.14343 0.13696 0.13136  0.12657  0.12259
45 0.16544  0.14820 0.13467  0.12368  0.11455 0.10686  0.10031  0.09471  0.08994  0.08593  0.08269
5.0 0.12889  0.11212 0.09956 0.08968 0.08169 0.07509  0.06957 0.06492  0.06100  0.05776  0.05520

18 G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, New York, 1948), p. 181.
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F16. 1. The anisotropy factor {r) as a function of the shape
parameter for fixed values of the deformation magnitude. The
symbols are explained in the caption of Table I.

puted by use of Egs. (3.7), (3.8), (3.4), and (4.13).
Even for o as large as 2, the value of {(r) at cos3y=0
differs by less than 19, from the average of its values at
cosdy= 1. This nearness to linearity, which is shown
graphically in Fig. 1, is impressive when one realizes
that o=2 corresponds to elliptic integrals with argument
¢>87° and to prolate or oblate ellipsoids of revolution
with one axis 20 times longer than another.

The dependence of {r:?) on ¢ is illustrated in Fig. 2;
curves for other values of ¥ would lie between the
prolate and oblate curves, The behavior at large o can
be obtained from Eq. (3.9) in the prolate case:

cosd3y=1, e P=g=ph<c=¢",
(r®)=e(1—e%)~* cosh—le¥2
=¢*(30+In2)+e 4% 2:r—i—an— 4+

From Eq. (3.10), the corresponding relations for the
oblate case are

“.27)

cos3y=—1, e =a<b=c=e",

<712> — e—v/2 (1 _ 6—3(1)—% Cos—le—30/2
= (r/2)e "2 —e 2+ (n/4)e 72— (4.28)
One would like to have a simple formula giving a
good approximation to (r:?) for all values of cos3y when
o is large; Eq. (4.30) below falls just a little short of

this mark. From an expansion of F(g,k) in the neighbor-
hood of its singularity,'s we find

F(¢p,k)~Ind—In[cosp+ (1—E£2 sin?p)? ],
(cospKl, 1-kK1),

As ¢ tends to infinity, cose tends to zero uniformly in

(4.29)

18 E, L. Kaplan, J. Math. and Phys. 27, 11 (1948).
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¢ty

Fi1G. 2. The anisotropy factor {r.2) as a function of the deforma-
tion magnitude for ellipsoids of revolutlon The symbols are
explained in the caption of Table 1.

7, but & tends to unity (nonuniformly in v) for cos3y
7 —1 while remaining always zero in.the oblate case.
Excluding the oblate case, we substitute Eq. (4.29)
in Eq. (3.7) and obtain

4c
(r®)=~-In—
c atbd

{ri®)~exp(—a cosy) { In4+V30 sin (g_.y)

—In[1+exp(—V3o siny)] ],(OS’y <z/3). (4.30)

For ¢=2, the error of this approximation increases from
0.29, to 49, as cos3y decreases from 0.8 to —0.8; for
o=35 the corresponding errors are 0.029, and 0.59,.

V. TWO EXAMPLES

The deformations found in atomic nuclei (¢ <0.3) are
small enough so that values of Coulomb deformation
energy obtained from Eq. (2.5) do not differ significantly
from those obtained from the assumption of a uniform
charge distribution with quadrupole deformation. The
point here is not the value but the assumption on
which it is based; we have shown that the results are
valid for a nucleus with a diffuse surface if the charge
distribution is ellipsoidal in the sense of Sec. I.

Perhaps as reasonable an assumption as one can
make at present about the charge distribution in a
heavy nucleus is that it has a deformed Fermi shape:

R—1.074%f11
f] . 6D

R)=po| 14+-exp———
P{E) po[ TP 0439
where R is defined by Eq. (2.1) and po is determined by
the total charge. We shall now use this model to
calculate the Coulomb deformation energy of Gd!®,
The corresponding spherical Fermi distribution, with R
replaced by 7, has a Coulomb energy and a mean square
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radius given by!®
U=560 Mev,
(ry=24.472.
The amount of deformation is determined by the intrin-

sic quadrupole moment, found experimentally from the
Coulomb excitation cross section to have magnitude!”

[Qo| == 10X 10~ cm?; (5.3)

the sign of Qo is positive if the nucleus is a prolate
ellipsoid of revolution. The relation between Qq and o
is easily found from the equation

(5.2)

f(Zz“‘— x2—yDp(R)dr
— (26— a2— b} f H(R)RR. (5.4)

The integral on the right-hand side is the total charge
times the mean square radius of the corresponding
spherical distribution. For a prolate ellipsoid of revolu-
tion, we thus have

Q0= %(62“_' —G)Z<72>spher
= Z() oo (1+dot---). (5.5)

In the oblate case the sign of ¢ is reversed in Eq. (5.5).
Substitution of Egs. (5.2) and (5.3) leads to

=027,
{r¥)=0.985,

where the latter value is obtained from Eq. (4.25).
Thus, the energy of the deformed distribution (5.1) is
lower than 560 Mev by 1.5%, or 8.3 Mev. Since the
quantum-mechanical exchange corrections amount to
approximately 5% of the classical Coulomb energy,
according to the statistical estimate, a better figure for
the Coulomb deformation energy would be 7.9 Mev.

Two remarks may be made in support of the assump-
tion (5.1). First, an ellipsoidal distribution satisfies
the reasonable condition'® that the dependence of
density on radius should be the same in all directions
aside from an angle-dependent radial scale factor, for
this condition is equivalent to requiring that the surfaces
of constant density be simple enlargements of one
another. Second, a widely used nuclear model is that of
nucleons moving in an anisotropic harmonic oscillator
potential, which may be written in the form V=4sR?;
the ellipsoidal surfaces of constant nuclear potential
are, according to the Thomas-Fermi statistical approxi-
mation, also surfaces of constant density.

Assumptions about the mass distribution in stellar
galaxies must be even more tentative. For elliptical

(5.6)

18 Reference 7: Egs. (4.11), (4.12), and (4.24).

17 K. Alder, A. Bohr, T, Huus, B. Mottelson, and A. Winther,
Revs. Modern Phys. 28, 432 (1956), Table V.2.

18D, L. Hill, Handbuch der Physik (Springer-Verlag, Berlin,
Germany, 1957), Vol. XXXIX, p. 181.
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galaxies, the observed luminosity contours are indeed
approximately elliptical, although their eccentricity
tends to increase and then go through a broad maximum
as one proceeds outwards from the center.”® Further-
more, there are marked departures from elliptical
shape in galaxies with a high degree of flattening.
However, the ratio of mass to luminosity may not be
constant throughout a galaxy.

A more direct source of information about mass
distribution is the measurement of rotational velocity
as a function of distance from the galactic center.
If the motion is assumed to be circular, the gravitational
force can then be deduced as a function of distance. A
detailed analysis of this kind has been carried out for
radio observations of the Large Magellanic Cloud by
Kerr and de Vaucouleurs.® Although this is not an
elliptical galaxy, they have fitted the data with an
oblate ellipsoidal distribution of the form

po[1—(R?/A%)] R<A,
= (1)
0 A<LR,
a=b=35¢,
A =5"%X2.8 kiloparsec=1.64 kiloparsec,

po=0.30 suns/parsec?.

The total mass, M=22X10° suns, includes their
estimated correction for random motions, but not an
additional correction for mass in the outer fringe of
the galaxy, beyond R=4. From Egs. (2.11) and (4.13)
and Table I, we find

e=107, v=m,
<rl2> = 0'821
—nGoA 1~ (R2/AD R<A
7(R)= ’ (5.8)
0 A<R.

At the center of the galaxy, the potential is {r,%)7(0),
according to Sec. II, and the escape velocity is found
from this to be 120 km/sec. The spherical distribution
corresponding to (5.7) has, by Eq. (2.14), a gravitational
energy

U(LLY)=—(5/T)(GM?*/4);

on dividing by the squared velocity of light, the mass
equivalent of this energy turns out to be 81 suns. It
should be noted that the gravitational energy of the
galaxy, as defined here, does not include the gravita-
tional self-energies of the individual stars. Since the
energy of the deformed distribution is (r)U(1,1,1),
the gravitational energy of deformation has a mass
equivalent of 15 suns.

(5.9)

1 G, de Vaucouleurs, Handbuch der Physik (Springer-Verlag,
Berlin, Germany, 1959), Vol. LIII, p. 322.

2 F, J. Kerr and G. de Vaucouleurs, Australian J. Phys. 9,
90 (1956).
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APPENDIX

The incomplete elliptic integrals F(¢,k) required for
Table I have values of % that are often very close to
unity. Except for the elementary case k=0, they were
computed by recursion relations derived from King’s
“hyperbolic scale of increasing amplitudes.”? The
recursion process terminates with the first step when
k is unity and converges rapidly unless 1—sing<<1—£&.

One calculates first a succession of arithmetic and
geometric means:

ap=1, yo=£k#0,
0n1=5(0ntYn), Ynr1= (an')’n)%;

Wn=7% (a,,+1/ Qo)

# L. V. King, On the Direct Numerical Calculation of Elliptic
Functions and Integrals (Cambridge University Press, New York,
1924).

(A1)

B. C. CARLSON

Four interations always sufficed to determine a,. The
main recursion relations are then

H=(1+sinp)/cosep,

1—k 1—%
Py=—H=2, Ry=—H",
1+ 1+

(A.2)
1+R.,
1+P,

Pn—f—l:wnPnZQn, Rn+1=wan2/Qn-

The elliptic integral is given by
F(ok)=(nH— ¥ 27" 2InQ.)/aw.  (A.3)
n=0)

The value of # at which the terms of the series became
less than 10—® was approximately 6 as an average but
increased to 12 for ¢=35, cos3y= —0.8.

The connection between King’s recursion relations
and ours is given by

InH= ©o,

A4
anﬂ=4¢n'—2¢ﬂ+1' ( )
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Wigner developed a group-theoretical method for those
problems of multiple scattering in which the elementary scattering
law is invariant under a group of transformations. The integral
transforms, used in more standard treatments for the reduction of
convolutions, come in here more naturally through the representa-
tions of the groups of transformations. Wigner’s work is extended
here to include the time-dependent slowing-down of neutrons. In
this case a group of linear transformations comes in, which does
not yield orthogonality. Nevertheless, it is possible to determine
all positive time moments of the distribution function and from
them the distribution function itself. The conditions for the
existence of the group are that the total scattering cross section is

proportional to 27 (v:any real number) and that either the ratio of
absorption to scattering cross section is constant (including zero)
or that the absorption cross section varies as 1/v. Moreover, it is
assumed that the angular dependence can be anisotropic, but
does not depend on energy in the center of mass system. For the
special case of no absorption and spherically symmetric elastic
scattering in center of mass system, our solution reduces to
Waller’s recent exact expression. As a further generalization, we
discuss the group which, with the same assumptions about the
cross sections, exists for the case of time-energy-space-direction
dependence. Here also, the group-theoretical method yields
naturally all positive moments of the distribution functions.

1. INTRODUCTION

WIGNER has given a group-theoretical method
for the exact evaluation of appropriate moments
in those problems of multiple scattering in which the
elementary scattering law is invariant under a group of
transformations.! He has shown in detail how this
method can be applied to the scattering of neutrons
without energy change in two and three dimensions
and indicated the generalization to scattering with
energy change in the usual special case encountered in
neutron slowing-down theory. The majority of such
problems have already been solved by more standard
methods usually based on integral transforms.? How-
ever, the new method affords a unifying point of view
based on the symmetry of the problem and enables one
to select immediately those cases in which an exact
solution is (at least formally) possible. In addition, to
quote Wigner, ‘“‘the method of computation seems
somewhat more transparent.”

We would like to discuss here the application of this
method to the time-dependent slowing-down of neutrons
which was not considered by Wigner.! The standard
conditions of slowing-down theory will be assumed;
i.e.,, we shall consider only elastic collisions with free
moderator nuclei which are at rest. After sketching the
method briefly, we will first discuss as simple illustra-
tions the purely energy-dependent and purely time-
dependent problems and then treat the case of time-
energy dependence, assuming that the total scattering
cross section is proportional to »”, where ¥ may be any
real number and that either the ratio of absorption
cross section to scattering cross section is constant
(including zero) or that the absorption cross section
varies as 1/v. The differential scattering cross section

* Operated for the U. S. Atomic Energy Commission by the
Union Carbide Nuclear Company.

LE. P. Wigner, Phys. Rev. 94, 17 (1954).

2Cf. e.g., C. C. Grosjean, dlssertatlon, Columbia University,
New York, New York, 1951,

will not be assumed to be isotropic in the center of
mass system. More generally, we shall assume that the
angular dependence is independent of energy in the
c.m. system. It will be shown that Wigner’s method
gives here directly the positive time moments of the
distribution functions for arbitrary source distributions.
The distribution functions can be determined through
these moments. The solution will be seen to coincide
with Waller’s exact expression® in the special case of
spherically symmetric elastic scattering in c.m. with no
absorption. Finally, we will indicate the group which,
with the same assumptions for the cross sections, exists
for the general case of time-energy-space-direction
dependence and outline the method of solution which
yields all positive moments of the distribution functions
for such problems.

A. Sketch of the Method

One starts from the integral equation which defines
the problem of multiple scattering:

foss0= [ 1P,

where f.(s) is the probability distribution function after

“‘elementary events” per unit volume element of s,
s standing for all the variables which define the state
of the system, and P(s,f) is the probability that an
elementary event changes the state s into a unit volume
element at #. The integration is over all possible states s.
In general, the elementary event will consist of a
collision plus the subsequent traversal of a free path
(or of a free path plus a subsequent collision). The total
distribution function is given by

OEPWHO)

3. Waller, Proceedings of the Second United Nations Interna-
tional Conference on the Peaceful Uses of Atomic Energy (United
Nations, New York, $958), Vol. 16, P/153.
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Equation (1) expresses the characteristic symmetry
of any multiple scattering problem. Because of the
identical character of each successive elementary event,
fn1(f) can be expressed by an (n+1)-fold integral, as
follows from (1):

fn+1(l)=f"'ffo(so)P(So,Sl)P(ShSz)'"

P(sn,t)dsodsy- - -ds,, (la)

where fo(so) describes the given source distribution.
Solution of the problem implies the reduction of this
(n+1)-fold integral to one or at most a few integrals.
Now if the problem is such that: (1) the transition
probability P(s,f) is invariant under a group of trans-
formations G, and (2) every state of the system can be
obtained from a fixed standard state by operations of
this group G, a solution can be derived in the following
way. By using the second condition, one establishes a
correspondence between the states and the group
elements. In the simplest case of one-to-one corre-
spondence, we simply identify the states with the
group elements. Assuming this is the case, we interpret
s and ¢ as the group elements and obtain from the
first condition:

P(s,t)=P(e,s %)=P(s74), (2)

where in the last term we have omitted to write the
unit element ¢ which corresponds to the standard
state. Consequently, Eq. (1) may be written as

Fra(t)= f Fuls)P(s=0)ds, @3)

where the integration may be interpreted as an invariant
integration over the group space. We shall always
consider left-invariant integration and define the volume
element accordingly. Note that f.(s) and f(s) are
distribution functions per unit volume element of
group space and, in general, differ from the usual
distribution functions by some weight factors.

One considers now a representation D®(#) of the
group G which is characterized by some variable (or
variables) %, and defines the matrices:

&, (F)= f Fn()D,® (2)dt, “@

10, (k) = f P(O)D,® (), 5)

where the integrations are over the group space. On
multiplying both sides of Eq. (3) by D,,®, integrating
over the group space and using the invariance property
of the group integral, one obtains directly:

&, (k)= Z,: B ™ (B)IL,, (k). (6)

E. GUTH AND E.

INONU

From (6) follows the solution for & (&) :
(I’ﬂw(n) (k) = Z @““,(0) (k)nu'»"(k)y (7)
p

where ®© is obtained from fo(s). The corresponding
“transform” for the total distribution function is
given formally by

®(k)=(1—11)"19© (k). (8)

If the representations are chosen properly, the
matrices ®,,(k) which are obtained in this way turn out
to be nothing else than the appropriate moments of the
problem. In all cases considered so far, it has also been
possible to invert the relations (4) and (8) and obtain
the distributions themselves. The main practical
problem consists in finding a simple expression for the
matrices II” and 1/(1—1I) it can be tackled easily
provided one chooses a convenient form for the
representations.

B. Simple Examples
1. Purely Energy-Dependent Slowing Down

As an illustration of the method, we consider the
stationary slowing down of neutrons in an infinite
homogeneous medium. On neglecting the space and
direction dependence, we define the state of the system
by the energy E of the neutrons. Then, assuming pure
scattering, we have simply :

o.(E' — E)

P(E'— E)=
a.(E")

per unit dE, )

where ¢,(E’ — E) is the differential cross section for a
scattering from E’ to within a unit interval at E, the
energies being measured in the laboratory system, and
o.(E’) is the total scattering cross section.

Now, if the probability for a fractional energy change
(E'—E)/E’ is independent of the energies, as it is
usually the case for the elastic collisions of neutrons
with moderator nuclei which are free and at rest, we
have for any positive real number «,

P(E' — kE)x=P(E' — E). (10)

Here the problem admits the multiplicative group of
positive real numbers. The volume element in the group
space is dx/x. The irreducible representations of this
group are one dimensional and given simply by D (x)
=2, where s may have any complex value. We obtain

g Os (Eo — KE())
H( = K“dl{, (1 1)
? f ou(Fo)
P (5) =f n(kEo)k*dxk, (12)

where E, is a fixed energy. Thus, in this case the
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appropriate moment is just the Mellin transform of the
distribution. The exact solution for f(E) can be formally
expressed as

81+1i%

JkEo)=-— ———3O (s)x—*ds,
2m Ja—io 1—-TI(s)
where ®© (s) is determined from fo(xE,).

I, instead of the energy E, one uses the lethargy
variable #=log(E./E), the appropriate group is the
additive group of real numbers; its representations may
be taken as e®**(unitary) or e **(nonunitary) and
correspondingly, one will get Fourier or Laplace
transforms. For the special case of isotopic scattering
in the c.om. system, all these transforms have been
used and the final inversion integrals carried out in
various approximations by many authors, among
others by Waller* (who used Fourier transforms), by
Davison® (who used Mellin transforms) and by Adler,$
Marshak,” Teichmann,® and Boffi® (who used Laplace
transforms).

(13)

2. Purely Time-Dependent Case

We specify the state of the system only by the time
variable ¢; i.e., we neglect space and direction depend-
ence and assume that the energy does not change in
the collisions. f,(¢) gives then the number of neutrons
which have made #» collisions before the time ¢. For the
transition probability, we have

P — ty=exp[—op(t—t)]Joe(t—1),  (14)

where o, and o, are the macroscopic scattering and
total cross sections, respectively; v is the constant
velocity and () is the step function defined by

e()=1 for t>0

(15)
«()=0 for :<O0.
Clearly, for any T we have,
PA+T—t+T)=PF — ). (16)

The problem admits the group of displacements in
time. Since the source is usually assumed to be zero
for t<0, it is more convenient to take the representa-
tions in the form D®(f)=¢*! where k is a positive
real number. Then II(%) and ®(k) become the Laplace
transforms of P(f) and f(¢), respectively:

o0 o,
(%)= f P()eHdi= vk, (1n

0';7)+

B(k)= f ) f(d)e*udt, (18)

41, Waller, Arkiv Mat. Astron. Fysik 34A, No. 4 (1947).

8 B. Davison, Neutron Transport Theory (Oxiord University
Press, New York 1957), Chap. XXII.

8 F. Adler, Phys Rev. 60, 279 (1941).

’R. E. Marshak, Revs. Modern Phys. 19, 185 (1947).

8 T, Teichmann, "Nuclear Sci. and Eng. 7, 292 (1960).

*V. C. Boffi, Ann. Phys. 9, 435 (1960).
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where we have assumed f(f)=0 for 1<0. As in the
previous example, the representation is one dimensional,
Il is simply the nth power of II, and the complete
solution can be written as

1 ki 1
f@O=-— ———™ (k)ektdk.  (19)
2wt e 1— H( )

The inversion in (19) can be readily carried out. On

.introducing  the absorption cross section g,=o0;—ay,,

one finds

&= fo() 4o exp(—o—avt)f folt) exp(oavt)de. (20)

This result could, of course, have been obtained by
direct integration of the differential equation satisfied

by f().
C. Time- and Energy-Dependent Slowing Down

We consider now the more realistic case of time and
energy (or lethargy) dependence. By taking as the
elementary event a collision at energy E’ and time ¢
(which reduces the energy to E) and the subsequent
free traversal with velocity v until the next collision at
time £, one can write the transition probability per
unit intervals in E and ¢ as

P(E,! —>E, t)=d,(E —E)
Xexp[—op(t—1) pe(t—1t).  (21)

The group of time displacements still leaves P
invariant, but since it does not involve the energy, it is
not sufficient to solve the problem. If one makes a
Laplace transformation in time, the result is still an
integral equation in E. Whether there exists a more
general group involving both E and ¢ depends on the
energy variation of the cross sections. Let us again
assume that [o.(E' — E)/o,(E’)]dE is invariant under
multiplication of energies by a positive real number.
The remaining conditions on ¢, and ¢,/o; can then be
enumerated as follows:

I. If 6,=a/v and ¢,/0,=c, where ¢ and ¢ are con-
stants, there is a symmetry group for P which is the
direct product of the displacement group in time and
the multiplicative group in energy; or in terms of
lethargy, it is the direct product of the two displacement
groups in time and in lethargy. Therefore, in this case,
the representations are again one dimensional and,
using lethargy, may be taken as D% (f,u)=¢ *te—vv,
The solution will be obtained by means of a double
Laplace transform:

M (k,w)=[ca/(a+k)JO(w), (22)
where © )
0,(0—u

Qlw)= f 0 du. (23)

II» is again a simple product and f(u,) can be
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expressed formally as

1 1 wy+i0 k14100
fut)y=—-— e**dw f etdk
2wt 2w w1—1% k1—i%0
1
X———dO(kw). .(24)
1—-T(kw)

The evaluation of this double integral has been
considered by Olsson® for the case of isotropic elastic
scattering, no absorption, and with the source fo(%,?)
=58(u)e**¢(f). He obtained an asymptotic expression
valid for large # and arbitrary 4, where 4 is the mass
number of moderator nuclei.

II. In the more interesting case, again with s,/0;
= constant, there may be a noncommutative group in
(E,t) which leaves the product ow(i—?¢) invariant.
Now, (¢—¢’) is left invariant up to a factor by a general
linear transformation in ¢, say thi=ai+8. If o= f(v),
the product f(v)(¢—¢) will remain invariant under
multiplication of the velocity (or energy) by a positive
real number provided one has

a=1/f() and f(w')=f(0)f().

In other words, f(») must be a representation of the
multiplicative group, i.e., have the form f(v)=1",
where v may have any real value. In short, if

cwv” and ¢,/c:=c (c: constant),

the problem admits the symmetry group in (E,?)
defined by
(Erts) (Eayly) = (BB, ti+1:E1)
0<E<w»

(Ef)'=(E7, —tE"), —wo<i<+wo

(1,0)=e (the unit element); (25)
orin (ut) by
(w1,21) (v2,t2) = (1t 2, L1tLoe™),
— oo <Y<+ o
(u )= (—u, —le™™*), —oo <t<+w
(0,0)=e, (26)

where we have put k= (y+1)/2.

In one respect, this group is different from all the
others considered in Wigner’s article. Left- and right-
invariant group integrations are not (cf. Appendix I)
identical here* In fact, in terms of (u,f), the weight
factor for left-invariant integration is e*%, while for
right-invariant integration it is simply 1. One might
think that this feature would cause difficulties in
solving the inversion problem, but it is not so here.
The positive time moments which are obtained by a

10, Qlsson, Arkiv Fysik 10, No. 12 (1956).
i1 We thank Dr. V. Bargmann for kindly pointing out this fact.
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direct application of the method suffice to determine the
distribution functions themselves.

For simplicity, we shall carry out the calculation only
for the total distribution function f(u,f). Clearly the
moments of f,(u,!) may be obtained in the same way.
The equation for the total f(u,) can be written in
terms of (u,f) as

+0 +o0
sa= [ [ swnrad, v -
- Xewduwdt + folul), (27)

with the conditiohs f(#,)=0, fo(u,)=0 for u<0 or
¢<0. In this equation, we have

P, ¢ — u, t)=p(u—u') exp[—ae~*(t—1') Jac
Xexp[—« (' —u)Je(t—1'). (28)

Here p(u—u') is the probability for the change of
lethargy from #’ to within a unit interval at # and is
assumed to depend only on the difference u—u'; 2o
is the highest value of the initial velocities with respect
to which the lethargy is defined by #=2log(v/v),
a=gvy, denoting by ¢, the value of o, for v. Note
that f(u,t) is the distribution function per unit volume
of group space and is related to the usual distribution
function ¢(%,f) per unit dudt by

e = o(u). (29)

The transition probability (28) remains invariant
under the operations of the group of linear transforma-
tions given by (26). Furthermore, every state (u,)
of the system can be obtained from the initial state
(u=0, t=0) by operating on (0,0) with the group
element (u,t).

It is convenient to take the representations in the
form (cf. Appendix II)

Dy (ut)=[t*/(v—p) ] exp[— (n+xv)u]

for v>u
=0 for y<u. (30)
We have then
0. (n) = (¢/a™*)Q[n+x(u—1)] for »>u
=0 for v<w, (31)
where
0= [ e (32)
and | ’
&y (M) =LY/ =) IV, [rHc(p+D] (33)

Here N,(n) is proportional to the Laplace transform
of the vth time moment of f(u,t):

1 0 {+ 2]
N,m== f rdu f faprd. (34
V. 0 0

On multiplying Eq. (27) by representation (30),
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integrating over the group space, defining U, (n)=a""
XN,(n), and taking u=0, we obtain finally
U [n+x(+1)]=c X Up[n+x(v'+1)]
]
XOM+x (V= 1)1+ V. [+« (»+1)], (35)

where V, corresponds to fp in the same way that U,
corresponds to f.
The solution of Eq. (35) is easily found to be

U,(n)

Vo(n—wx)

;{jﬁ {(1=c0ln— A+2)cT}
W= (r— ) ]— Vui[n—

p= y—p

Eﬂ {1—c0ln— (\+2)c ]}

(v—p+1)¢]

(36)

The positive time moments of f(#,t) can be expressed
essentially as the inverse Laplace transform of this
function U,(n). On multiplying with the factor e—** we
obtain, per unit da,

'6 3 1

ot 2mi

M ()= f " o=

1+

X en™U,(n)dn.

71—i%

@37

For the special case of no absorption (¢=1), isotropic
elastic scattering in c.m., and an initial monoenergetic
burst fo(u,t)=e(£)8(u)e~t, the expression (37) reduces
to

v! 1 n1-+ico v
M, () =~ f e I1 G-{(n—)dn, (38)
@t 2w Jyio A=0
with
1 l—e—q(H'fl)
Gn)=1—-———oj (39)
a 1419
and

a=44/(4+1)%, g=log(A+1/4—-1)
where A is the mass number of the moderator nuclei.

Expression (38) was first obtained by Waller'? from
his exact solution?® for ¢(u,t). Eriksson'® has evaluated
the integral for large values of u.

The distribution function itself is determined by the
moments. It is possible to show, for instance, that
Waller’s expression for the solution in the above-
mentioned special case may be derived from the
M,’s given by (38). On considering the Laplace trans-

121, Waller, Arkiv Fysik (to be published).
3 K, E. Eriksson, Arkiv Fysik 16, No. 1 (1959).
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form of ¢(u,t) with respect to time, we have

Y(uN)= f “”¢(ut)dt"2( )M,(u), (40)

v=( vl

or substituting for M, from (38),

On using Waller’s function P(y) defined by the
difference equation

=€K“Z

v=0 Qg

14600 »
f e I G (n—xA)dn. (40a)
2wt i A=0

P(n)=Pn+x)Gn+x), (41)
the product in (40a) may be expressed as
I G- (n—M)= Pn)P-[n— -+ D). (41a)

On introducing further the inverse Laplace transform
of P~I(n),

1 ngtiw
Se=— [ empitan
21[‘1: ng—1i%0
for which we have
Pit)= [ Stemda,
0

the summation in (40a) can be carried out to obtain,

1 i
[ enpGryin
n—i0

™

Pp)= e

‘“S (w).

® 1
X f dwe™ -
0 }\—I—ae"‘

The inverse Laplace transform of (42) with respect
to A yields Waller’s solution:

1 1w )
; f emdnP(n) f exp(—nw)
0

27t 1—1i%0

(42)

o (u,t)= e

ng+ioo

1
Xexp(— ate"‘“)dwz—j Pi(qevedy’. (43)

L & gg—io

The distribution function in the case of nonisotropic
scattering and ¢>%1 can be expressed in a similar form
by defining a function R(y) through the difference
equation

R(m)=R(n+0){1—cQ@+n)}. (44)

The corresponding solution (for the same source) is
obtained by simply replacing P(n) by R(y) everywhere
in (43).

To derive the solution for an arbitrary source distribu-
tion, one has to evaluate the expression corresponding
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to (40), where the M,’s are now taken from (37). An
alternative way is to express the general distribution by
means of the solution for a monoenergetic burst. For
instance, if the initial burst has a distribution in energy
given by g(u), the solution may be immediately
written as

0

o (1,1) = f ditog (o) 0 (u— g, £; =), (45)

where @(u—uq, t; ae**) denotes the expression (43)
in which the argument # is replaced by #—u, and the
parameter @ replaced by ae—*%.

III. If o, v* and o, = (1/v), the preceding solution
again applies with only a slight modification. By
defining

e f(u,t) = F (u,0),

one obtains for F(u,t) an equation of the same form as
(27) in which, however, o,/0;=1 and Fo(u,t)=e¢""*
X fo(u,t). Consequently, as already pointed out by
Waller,® one can write the solution for this case as

F(u,t) = e F (u,t) o1

It may be worth mentioning that the results of the
three preceding sections can also be applied almost
directly to a special problem of space-energy dependence
in which the scattering is assumed to be spherically
symmetric in the latoratory system. Then the transition
probability P(E', ' — E, r) has a similar form to the
P(E', Y — E, t) of (21) with v(¢—¢') replaced by |r—1r’|.
In determining the symmetry group, the exponent vy
now plays the same role as did (y+1) for the (E)
case; e.g., for g;=constant (other conditions being the
same) we have the commutative group in (E,r). If
spherical symmetry is not assumed in the laboratory
system, the space dependence cannnot be separated
from the velocity-direction dependence.

(46)

D. Time-Energy-Space-Direction
Dependent Distribution

The general slowing-down problem also admits a
group which involves all the seven variables if the
cross sections satisfy the conditions of Sec. C.II or
C.IIL. The stateof the system is now defined by four
variables (r,) for space time, one variable E for the
energy, and two variables () for the velocity direction.
By taking the elementary event again as a collision
plus the subsequent free traversal, one can write the
elementary transition probability as'4

P E,Q — 1tEQ)
=0.(E,Q"— E,Q) exp[ —o(E) [r—1'|]

(),

4 E. Guth and E. Inénii, Phys. Rev. 118, 899 (1960).
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where o.(FE/, Q' — E, Q) is the probability that at r/,
the neutron will undergo a scattering from E', Q' to
within a unit interval at E, Q. Now consider the group
of transformations defined by the reducible matrix

e Y/2R g
0 1
R L)
P L
0 1

which operates on the vector

_~ P

that characterizes the state of the system. In (48), e is
a positive real number, R is a rotation matrix, a is a
space displacement vector, 7 is a time displacement
parameter, and y is a real number. The group space
has eight dimensions, three of which are for the displace-
ments, three for the rotations (one can use e.g.,
the three Euler parameters as described in Wigner’s
article), and two for linear transformations in time and
energy. The volume element for left-invariant integra-
tion contains a factor €”*V/2 so that the transition
probability per unit volume element in group space is
(47) multiplied by e+D/2, One can easily check that
this probability is invariant under the group of trans-
formations (48) provided the cross sections satisfy the
conditions of Sec. C.II or C.III.

The representations of the group (48) can be obtained
by forming the direct product of the representations of
the two groups represented by the following matrices:

(% 9) o0
and
[(r+D/2]w
(” o ‘1) (49b)

where we have again used lethargy as variable. The
representations of the group (49b) which lead to the
positive time moments have already been discussed.
The corresponding representations of the group (49a)
may be taken in the following form (cf. Appendix III):

D(")M’ Vm!sulm (I,M,R)
exp[— Gvutn)u] 2
IR S D n®(®)
(u—n")!

m’ =]

X f (B D Vi () Vo™ (p)dp  (50)
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where # may be any complex number and characterizes
the representation; D®W(R) is the usual (2/41)-
dimensional unitary representation of the rotation
group, Y;.’s are the normalized spherical harmonics,
p is the radius vector for a point on the unit sphere, and
the integration is over the unit sphere. R is the rotation
which takes the standard velocity direction Q, into the
velocity direction Q of the state considered. Similarly,
r and # are the position and lethargy corresponding to
the state considered.

The significance of operating with the representation
(50) becomes clearer when one considers simple source
distributions. For instance, if we have an isotropic
point source at the origin, the distribution function
can only depend on r and the angle between r and Q.
In this case, writing the rotation R as R=ST where T
brings Qo into the direction of r and S brings the
direction of r into Q, using Euler angles to express these
rotations and carrying out all the integrations, remem-
bering the independence of f(r,Q,u) from rotations
around € and r, one sees that the matrix element
Bogo, w10 reduces essentially to

fg w j: jl J; wf(f,g,%}r?r“dr}’;(coso)d(cosﬁ)

Xexp{ m[(%ﬂ%‘l)*{—n]u}du.

It is clear that using the representations of the full
group one would be able to express in a closed form the
Laplace transform with respect to lethargy of the uth
space and »th time moments of the /th Legendre
component of the distribution function f(r8,%,%). We
shall not carry out this calculation here. The results in
the stationary case and for spherically symmetric
elastic scattering in c.m. have already been given by
Placzek.’® We would like to point out only that more
complicated cases with, e.g., anisotropic sources can
also be treated using the representations (50) in their
general form.
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APPENDIX

We want to discuss here briefly the integration over
the group (26) and the determination of the representa-
tions (30) and (50).

I. The weight factors for invariant integration may
be obtained either by using the standard formula'® or
by direct calculation in the following way: For left-

15 G. Placzek, declassified Rept. MDDC-2 (1946).

16, P. Wigner, Group Theory and Its Applications to the
Quanium Mechanics of Atomic Spectra (Academic Press, Inc.,
New York, 1959), p. 99,
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invariant group integration one should have

_[ :“’ f;mf (,0)g: (e, )dudt

+0  g+®
[ [ rwownimd a

for any function f(u,) which makes the integrals
converge; g is the weight factor to be determined.
On writing out the product (') (u,t) according to
(26) and making a change of variables, one derives
from (1) the relation

8 (“:t) = gl[u—'u,x (g_t,)g_m,]e_.m, (Az)

which must be valid for any (#',t). By putting in
particular ' =, t'=t, we find, defining g(0,0)=1,

gilmt)=e~" (A3)

On the other hand, the equation for right-invariant
integration,

j: h f +°r)f (0, 8)g, (u,t)dudt

+0 At ‘
= [ [ rwse e (a9

.gives, in the same way,

g’(uy i) = 1' (A‘s)

II. Consider the transformations induced in a space
(¢,7) by the group elements O(x,4). Let us define for
any function f(£,r) the operation P(0)f(£,7) by

PO)f(gn)=fE, )= flE—u, (r— ] (A.6)

The operators P(0) form a representation of the
group (26):
P(OI)P(02)=P(0102)~ (A-7)

It follows that if one can find a set of functions
¢, (&,7) for which

P(O)d’u('s:"'):Z#’ (343 (u, 3)¢p' (f;"'); (A-S)

then the coefficients D,.,(%,f) would also form a
representation of the same group. It is easy to guess the
form of the proper set for the group (26). In fact for

¢u(g,7) =" (—=)/u 1, (A.9)

where % is any complex number and p any positive
integer or zero, we have

’

u i
oulE—n, (r—t)e™]= 2 e rtdv———g, (£7).
w=0 (—u! (A.10)
Therefore,
Dy (w, t) = g~ rtwv o=/ (u—p") ]
for u'<p,
p=0,1---,
=0, for u'>u, (A.11)
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in a v-dimensional representation of the group (26)
characterized by the complex variable 5. All its elements
below the main diagonal are equal to zero; however,
the representation matrix cannot be completely reduced,
as it may be checked directly. We also note that the
representation is neither unitary, nor orthogonal, but
has the convenient form for the evaluation of positive
time moments of the distribution function f(,?).

IIT. The representation (50) may be obtained by
using the method of “little groups.”'?:1# In this method
one builds up the representations of the full group out
of the representations of an invariant subgroup by
means of representations of the so-called little groups.
The group defined by -the matrix (49a) contains
linear transformations (a,#) and rotations (R). Let us
denote the corresponding operators by L(a,x) and
M(R). To the general group element (a,u,R), there
corresponds the operator O(a,u,R)=L(a,u)M (R). The
operators satisfy the following group relations:

L(ay,u1)L(as,uz) = L(a;+e*“ay, w1+ us)
M(RI)M (R2)= M(lez)
M (R)L(a,u)=L(Rau)M (R),

(A.12)

where we have put v/2=w. Consequently, we have

O(a1,41,R1)0 (ag,u2,R5)

=O(a1+ew“lR1a2, u1+u2, R1R2). (A13)

The relations (A.12) indicate that the operators
L(au) and the corresponding transformations (a,u)
form an invariant subgroup. The representations of
this subgroup (which will lead to space moments) may
be written down by an immediate generalization of the
representations (30). In terms of a set of functions
¢.(p), where p is the radius vector of a point on the
unit sphere, one can write

L(au)é.(p) = zﬁ Do (a5 Db (), (A14)

where D,.,™ is the representation matrix defined for
all values of g, u’ as

Dy (a,u; p)=e=rrowu[(p-a)—+"/(u—u')!]
for u'<p
for u’>p.

=0 (A.15)

We select now a vector p, (e.g., in the positive z
direction) and keep it fixed. The two dimensional
rotations P, and p, from the little group in our problem.
To associate a P, to every R and p, we define for

7 See, e.g., J. S. Lomont, 4 pphcadwns of Finite Groups (Aca-
ademic Press, Inc., New York 1959), p.
18 E_ Inéni and E. P. ngner, Nuovo c1mento 9, 706 (1952).
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every p a rotation S(p) such that

S(p)po=p. (A.16)
Then, the rotation defined by
P,=S(p)"'RS(R~'p) (A17)

leaves po invariant and hence, is a rotation around po
whose angle of rotation depends on R and p. The
irreducible representations of the little group are
one dimensional and have the form e®¢. It then follows
that all the representations of the group (49a) which
are induced by the representations (A.14) can be re-
duced to the form

O(a,u,R)¢.(p)

u
=¢i?(B.D 5" D, (a,u; p)p (R71p). (A.18)
w=0 .

These representations are characterized by the values
of 9 and s. For our purposes, it is enough to consider
the representations with s=0; these have a definite
parity, while those with s3#0 have not.!® Since the
transition probabilities considered in our problem are
invariant under space reflexion, the representations
without a definite parity cannot be used in these
calculations.

To obtain the form (50), we expand ¢,(p) in spherical
harmonics ¥i.(p) (which are normalized over the
unit sphere):

d’n(p): ZZ Au.lmylm(p)- (A19)
We have then, letting s=0,
O(a,u,R)¢u(p)
=2 Ayt imDyr, (a,u; p) Ylm(R_lp)y (A.20a)
tmu’
which can be written in terms of ¥y (p) as
= Z Au',lm Z D(ﬂ)p’l’ m’ ,MIM(ajuyR) Yl’ m (p)~ (A-ZOb)

lm,u’ Um'

The expansion coefficients Dypm um form the
required representation of the group (49a). On compat-
ing (A.20a) and {A.20b), we obtain

D(")u'l’m’ ,ulm(a;urR)
= f Dy (a,u; )Y m*(p)YVim(R-'p)dp, (A.21)

where the integration is over the unit sphere. The form
(50) is obtained from (A.21) by expressing ¥;.(R"'p)
in terms of the representations D®(R),m of the
rotation group.
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